首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
球形海绵铁还原去除水中硝酸盐的静态研究   总被引:3,自引:1,他引:3  
利用铁精粉造球和直接还原工艺制备了粒径1~5mm的多孔性球形海绵铁,对该球形海绵铁处理模拟硝酸盐污染水体进行了静态实验研究。结果表明:溶液pH值和溶解氧对硝酸盐去除率影响显著,pH值<2时硝酸盐去除率较高,而pH值>3时硝酸盐去除率很低;水体溶解氧能够促进硝酸盐的去除,如果不能向水体供氧,海绵铁几乎不能去除水体中的硝酸盐;无论硝酸盐初始浓度高低,固液比为1:10时海绵铁对硝酸盐的去除率最高,过高或过低的固液比都影响硝酸盐的去除;此外,硝酸盐初始污染浓度对去除率也影响显著,硝酸盐浓度<20mg-N/L时,硝酸盐的残余量保持在0.5mg-N/L左右,硝酸盐浓度较高时,去除率随硝酸盐初始浓度的增加而显著降低。  相似文献   

2.
利用小球烧结和氢气还原工艺制备了粒径1mm~5mm的多孔性球形海绵铁,对球形海绵铁去除水体中硝酸盐的效率及去除动力学进行了研究。结果表明:溶液初始pH值对硝酸盐去除效率的影响显著,初始pH值小于3时,硝酸盐的去除率随溶液初始pH的增加而逐渐降低;初始pH值大于3时,硝酸盐的去除率又随之升高。硝酸盐浓度低于10mgN/L时,硝酸盐去除率随着硝酸盐初始浓度的增加而增加,硝酸盐的残余量保持在0.4mgN/L左右;硝酸盐浓度高于20mgN/L时,硝酸盐的去除率随初始硝酸盐浓度的增加而略有降低。球形海绵铁去除硝酸盐为一级动力学反应,反应级数为0.970~1.378,表观反应速率常数为0.314h-1~0.536h-1。海绵铁还原硝酸盐的主要产物为氨氮,随着还原反应的进行,溶液pH值快速增加,氨氮以分子态氨的形式从水中逸出。进行归纳总结和对比,并以多环芳烃的提取为例列举了各方法的应用步骤,从而为其他环境样品其他有机物分析预处理提供参考。  相似文献   

3.
水中硝酸盐污染现状、危害及脱除技术   总被引:2,自引:0,他引:2  
世界范围内地下水硝酸盐的污染已越来越严重.受硝酸盐污染后的地下水会以直接或间接的方式危害人们的健康,由于硝酸盐会在水体中沉积并不断地累积,硝酸盐会导致婴儿患上高铁血红蛋白症,已经成为世界性的环境问题.随着硝酸盐污染的日益恶化,水体中硝酸盐污染问题不容乐观.根据使用方法的不同,硝酸盐氮常规去除技术大体分为物理方法、生物脱氮法及化学还原法.利用一系列方法将水中的硝酸盐还原为氮气是水中硝酸治理的根本方法.  相似文献   

4.
通过对高尔夫球场施用化肥后的降雨过程进行模拟淋滤试验,测试了不同施肥量、降雨强度及植被密度条件下硝酸盐的淋失浓度,并借助SAS9.0软件对测试数据进行了统计分析。结果表明,在降雨总量相同的条件下,淋滤出的硝酸盐氮受植被密度和施肥量的影响较大,而降雨强度则元显著影响;在暴雨-稀草-高肥时的硝酸盐氮淋出量最多,而中雨-密草-低肥淋出量最少。土壤中硝酸盐氮含量与淋滤液中硝酸盐氮的淋失量规律吻合,即硝酸盐氮淋失量大时,土壤中的硝酸盐氮含量低;而硝酸盐氮淋失量小时,土壤中的硝酸盐氮含量高。  相似文献   

5.
地下水硝酸盐污染生物修复中的亚硝态氮积累研究   总被引:2,自引:2,他引:0  
针对地下水硝酸盐污染生物修复过程中出现的亚硝态氮积累问题,试验分析在以硝酸盐和亚硝酸盐为主要电子受体的两个体系中,硝酸盐氮和亚硝酸盐氮的去除速率以及磷源对二者的影响,从而探究硝酸盐生物修复过程中亚硝态氮积累的因素。结果表明:在碳源不足的情况下,硝酸盐还原菌对碳源的竞争能力强于亚硝酸盐还原菌,此时将会出现亚硝酸盐的积累。碳源充足时,亚硝酸盐为主要电子受体的体系中亚硝酸盐氮的还原速率约为以硝酸盐为主要电子受体的体系中硝酸盐氮还原速率的1.7倍。磷浓度也是影响反硝化过程中亚硝酸盐积累的重要原因。在其他条件不变的情况下,添加磷源后,硝酸盐为主要电子受体的体系中硝酸盐氮的还原速率约为未添加时的1.16倍;亚硝酸盐为主要电子受体的体系中亚硝酸盐氮的还原速率约为未添加时的1.23倍。  相似文献   

6.
1986至1988年在我国两广地区进行了三年的春季降水集中观测,根据所测得的大气硝酸、硝酸盐气溶胶和雨水硝酸盐浓度,计算了硝酸和硝酸盐的清除比,其平均值分别为1.7×106和5.6×105。利用连续降雨样品的硝酸盐沉降量计算了硝酸盐的清除系数λ,λ值约在10-4-10-5S-1之间。   相似文献   

7.
浐河、涝河河水硝酸盐氮污染来源的氮同位素示踪   总被引:19,自引:9,他引:10  
邢萌  刘卫国  胡婧 《环境科学》2010,31(10):2305-2310
通过分析河水和工业污染水体硝酸盐氮同位素组成,对西安市周边主要河流浐河和涝河的硝酸盐污染源进行了初步研究.结果发现,浐河、涝河从上游至下游,河水硝酸盐氮同位素组成δ15N-NO3-值呈逐渐升高的趋势(1.3‰~9.0‰和3.3‰~7.4‰),而沿河流域2个工业排污口废水样的δ15N-NO3-值为:11.5‰和11.1‰.不同来源的硝酸盐氮同位素表现出明显的差别,工业排污可能是该河流硝酸盐氮浓度增高主要原因之一.相对于河水硝酸盐浓度变化,河水中硝酸盐氮同位素能够作为示踪水系硝酸盐氮污染来源和过程的可靠手段.同时,本研究大致区分了浐河和涝河流域主要的氮源输入,为研究硝酸盐污染,营养元素流失提供了重要的信息.  相似文献   

8.
近年来在许多国家都表明地下水中硝酸盐的含量在扩大。在保加利亚的一些水源里,特别是在春秋季节,证实硝酸盐的浓度超过了饮用水的容许标准(30mg/L)。硝酸盐污染地下水主要是和栽培农作物大量施用矿物肥料相关。保护地下水不受矿物肥料中的硝酸盐污染的主要方法实际上只有两种。其中第一种是预防方法。它包括旨在减少氮的冲刷和硝酸盐对  相似文献   

9.
研究以50~100目的海绵状铁粉为还原剂,采用静态试验方法,研究了铁对硝酸盐氮的还原作用及其影响因素,分析了铁粉用量、铁炭比、pH值、硝酸盐氮初始浓度、温度以及铁粉表面预处理对硝酸盐去除率的影响。试验结果表明,最佳铁氮质量比为400∶1,铁粉投入过多对硝酸盐的去除率没有进一步促进;活性炭的加入有助于零价铁(Fe0)还原硝酸盐,降低反应后溶液中的NH+4-N浓度,试验最佳的铁炭比为1∶2;溶液的初始pH值降低有利于硝酸盐氮的去除;硝酸盐氮初始浓度越大,反应的平均速率越高;升高温度和酸洗预处理,有利于提高硝酸盐的去除率;产物分析表明,试验过程中,去除的NO-3-N含量中约60%以上转化为NH+4-N,NO-2-N浓度很低。  相似文献   

10.
一、地下水去除硝酸盐的现状目前,许多国家的供水中,都出现了硝酸盐含量增加的趋势。尤其是,随着近年来各国对水质要求的提高,使饮水中硝酸盐的含量问题更为突出。在荷兰(用水的2/3为地下水),有25%左右的地下水,其硝酸盐含量过高。在我  相似文献   

11.
氯化十六烷基吡啶改性活性炭对水中硝酸盐的吸附作用   总被引:3,自引:2,他引:1  
郑雯婧  林建伟  詹艳慧  方巧  杨孟娟  王虹 《环境科学》2013,34(11):4325-4332
采用阳离子表面活性剂氯化十六烷基吡啶(CPC)对活性炭进行了改性,并通过实验考察了CPC改性活性炭对水中硝酸盐的吸附作用.结果表明,CPC改性活性炭对水中的硝酸盐具备较好的吸附能力.CPC改性活性炭对水中硝酸盐的吸附能力明显高于未改性的活性炭.CPC改性活性炭对水中硝酸盐的吸附能力随着CPC负载量的增加而增加.CPC改性活性炭对水中硝酸盐的吸附动力学满足准二级动力学模型.CPC改性活性炭对水中硝酸盐的吸附平衡数据可以较好地采用Langmuir等温吸附模型加以描述.根据Langmuir等温吸附方程,CPC负载量(以活性炭计)为444 mmol·kg-1的改性活性炭对水中硝酸盐的最大单位吸附量为16.1 mg·g-1.CPC改性活性炭对水中硝酸盐的吸附能力随着pH的增加而降低.水中共存的氯离子、硫酸根离子和碳酸氢根离子会抑制CPC改性活性炭对水中硝酸盐的吸附.升高反应温度略微降低了CPC改性活性炭对水中硝酸盐的吸附能力.采用1 mol·L-1的NaCl溶液可以使95%左右吸附到CPC改性活性炭上的硝酸盐解吸下来.CPC改性活性炭吸附水中硝酸盐的主要机制是阴离子交换和静电吸引作用.上述实验结果说明,CPC改性活性炭适合作为一种吸附剂用于去除水中的硝酸盐.  相似文献   

12.
用WHO/FAO规定的ADI值为评价标准,调查研究了哈尔滨市主要蔬菜品种硝酸盐污染状况.分析结果表明,硝酸盐含量依次为叶菜类>根菜类>白菜类>豆类>茄果类>瓜菜.蔬菜的品种及不同部位间硝酸盐含量差异较大,不同部位硝酸盐累积量为:根>茎>叶>果实.此外,相同部位不同部分的硝酸盐含量也存在较大差异.  相似文献   

13.
分别研究了钢渣、龙须菜和钢渣-龙须菜等系统对富营养化海水中硝酸盐、磷酸盐的去除效果,探讨了利用钢渣-龙须菜系统处理富营养化海水的可行性.结果表明,钢渣可有效去除富营养化海水中的磷酸盐,不能去除海水中的硝酸盐.起始密度为3g/L的龙须菜对轻度富营养化海水(硝酸盐:0.3~0.6mg/L,磷酸盐:0.05~0.1mg/L)中硝酸盐、磷酸盐的去除率较高,但是对重度富营养化海水(硝酸盐:4.8mg/L,磷酸盐:0.8mg/L)中硝酸盐、磷酸盐的去除率较低.钢渣-龙须菜系统将钢渣对磷酸盐的物理吸附、化学沉淀与龙须菜对硝酸盐、磷酸盐的生物吸收结合起来,能够显著降低富营养化海水中硝酸盐、磷酸盐的浓度.  相似文献   

14.
薛松  张梦竹  李琳  刘俊新 《环境科学》2018,39(3):1357-1364
伴随硝酸盐还原的甲烷厌氧氧化是协同减少环境中硝酸盐及甲烷的有效途径.利用实验室废水处理厌氧污泥、污水处理厂厌氧污泥和填埋场覆土驯化富集硝酸盐还原型甲烷厌氧氧化菌群.考察菌群的甲烷氧化效果,结果发现接种污水处理厂厌氧污泥体系甲烷转化量最大,为0.05 mg·d-1.微生物群落结构分析显示,该体系中甲烷微菌和甲烷八叠球菌是甲烷氧化菌,假单胞菌、梭状芽胞杆菌和热单胞菌参与了硝酸盐的还原反应.硝酸盐的量影响甲烷的转化率及菌群结构.当硝酸盐浓度为200 mg·L-1时,体系中的硝酸盐还原菌为假单胞菌和梭状芽胞杆菌;浓度增加至500 mg·L-1时,硝酸盐还原菌则是假单胞菌和热单胞菌.同时,甲烷转化率增加34.7%.研究结果为该菌群应用于含甲烷废气与含硝酸盐废水的协同处理提供科学依据.  相似文献   

15.
这篇文章讨论了英国政府对1989年8月提出的采用保护区的方式保护国家水源免受硝酸盐污染所采取的政策。它概括了1989年水法中宣布硝酸盐敏感区权力范围的使用及宣布硝酸盐敏感区时所遵循的程序。在硝酸盐敏感区支付赔偿费及违反污染物赔偿原则的原因也做了概括。在控制硝酸盐方面,英国的政策和欧洲共同体的指令间是很相似的。文章对两种对策间的相似性做了说明。  相似文献   

16.
精确pH条件下微电解法去除饮用水中硝酸盐的研究   总被引:1,自引:1,他引:0  
目前硝酸盐污染已对饮用水安全构成了一定威胁,随着未来饮用水指标的提高,利用绿色处理方法去除硝酸盐有着迫切的实际需求。在精确pH条件下利用微电解法去除硝酸盐对饮用水出水不会产生影响。实验结果表明:对进水硝酸盐浓度为30 mg/L体系下的单因素进行连续实验,当进水pH=3.12时可取得最佳去除效果,最高去除率为68.7%;当进水pH=3.52时,系统的硝酸盐去除效果最差,最高去除率仅为56.1%;当铁碳质量比为3∶1时可取得最佳去除效果,稳定阶段硝酸盐去除率在80%以上,最高去除率为85.7%;硝酸盐去除率随水力停留时间的增加而提高,当水力停留时间为60 min时,最高去除率达93.2%。  相似文献   

17.
孔晓乐  王仕琴  丁飞  梁慧雅 《环境科学》2018,39(6):2624-2631
为探究白洋淀流域生活污水河附近地表水和地下水硝酸盐来源,于2014年7月沿着生活污水纳污河——府河采集地表水和地下水.通过分析水化学和氢氧同位素(δ~2H、δ~(18)O)明确地表水和地下水转化关系,并通过硝酸盐氮(δ~(15)N)同位素确定硝酸盐来源.结果表明,河水来源于城市和农村生活污水,同时受蒸发作用影响.浅层地下水受府河、白洋淀和太行山山区地下水侧向补给.浅层地下水硝酸盐超标(世界卫生组织)率为16.7%.受水体自净能力的影响,府河上游硝酸盐浓度大于下游.受区域水流方向的影响,南岸浅层地下水硝酸盐浓度大于北岸.近河和近淀区域浅层地下水硝酸盐主要来自于地表水.此外,土壤、化肥及其点源污染也是地下水硝酸盐的主要来源.城市和乡村居民生活及农业生产活动影响区域地表水和地下水硝酸盐.  相似文献   

18.
微污染水源水生物处理中硝酸盐氮的变化   总被引:2,自引:0,他引:2  
通过中试系统和大型工程 ,探讨了微污染水源水生物处理工艺中硝酸盐氮的变化规律。研究表明 ,微污染水源水生物处理工艺中硝酸盐氮的增加是氨氮生物硝化的结果 ;处理系统启动中硝酸盐氮变化率的变化反映了两类硝化细菌在生长速率和转化能力上的协调关系以及生物膜的成熟过程 ,启动结束时硝酸盐氮变化率趋于 1.0 0 ;稳定运行阶段各工况下处理系统硝酸盐氮变化率均在 1.0 0附近 ;水源水中少量的有机氮和亚硝酸盐氮对氨氮硝化过程无明显影响。硝酸盐氮变化率是描述微污染水源水生物处理系统氨氮硝化状况的重要参数。  相似文献   

19.
对上海市秋季蔬菜中硝酸盐的含量及居民硝酸盐摄入情况做分析和评估,于2009年9~11月从上海市松江、奉贤、金山和浦东4个区的采集了大棚和露地的25个品种439个蔬菜样品,用紫外分光光度法测定蔬菜的硝酸盐含量.结果表明,所有蔬菜样品中,污染程度严重的占41.46%,中、重度污染的占30.53%,轻度的占28.02%.不同种类蔬菜的硝酸盐含量从高到低依次为叶菜类、根茎类、瓜类、豆类、茄果类,同类蔬菜不同品种的硝酸盐含量差别也较大.浦东新区叶类、根茎类蔬菜硝酸盐含量大棚明显高于露地,奉贤区和松江区蔬菜硝酸盐含量均值都为露地高于大棚.上海市居民每日通过蔬菜摄入的硝酸盐为445.22 mg,比WHO/FAO的ADI值高出38.42%,研究结果表明需要加强蔬菜施肥的监督管理.  相似文献   

20.
岩溶流域不同水体硝酸盐的来源解析   总被引:2,自引:4,他引:2  
为解析岩溶流域不同水体中硝酸盐的来源和转化过程,运用δ~(15)N-NO~-_3、δ~(18)O-NO~-_3和δ~(18)O-H_2O多同位素示踪技术和水化学分析方法,对地表水和地下水的硝酸盐时空分布特征、来源及转化过程进行分析,并利用SIAR模型,计算不同端元对水体硝酸盐的贡献比例.结果表明,研究区水体溶解性无机氮以NO~-_3-N和NH~+_4-N两种形态为主,地下水样品中的NO~-_3-N浓度在平水期和枯水期的超标率分别为7.89%和16.67%.时间上,枯水期水体硝酸盐平均浓度高于平水期.空间上,旱地集中区(凯伦河至松柏山水库坝前区域)地下水硝酸盐浓度明显高于水田集中区(干河区域),旱地和建设用地集中区(凯伦河区域)地表水硝酸盐浓度普遍较高.水体硝酸盐转化过程以硝化作用为主,土壤有机氮、粪便污水和化肥为水体硝酸盐的主要来源,对地表水硝酸盐的贡献比例分别为36.7%、 34.7%和28.6%,对地下水硝酸盐的贡献比例分别为39.9%、 34.9%和25.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号