首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用磷酸盐溶液和方解石之间的反应得到方解石去除水中磷酸盐后的产物,即磷酸盐改性方解石,通过实验对比分析了方解石和磷酸盐改性方解石对水中磷酸盐的去除动力学,并考察了磷酸盐改性方解石去除水中磷酸盐的各种影响因素。磷酸盐改性方解石对水中磷酸盐的去除能力明显优于方解石。当反应时间为2h时,实验条件下磷酸盐改性方解石对水中磷的去除率达到72%,而方解石对磷的去除率仅为35%。当pH为5~7时,磷酸盐改性方解石对水中磷酸盐的去除能力较高;当pH由7增加到10 h,对磷酸盐的去除能力略微下降;当pH由10增加到12 h,对磷酸盐的去除能力急剧下降。磷酸盐改性方解石对水中磷酸盐的单位去除量随初始磷质量浓度的增加而增加。过高的初始磷质量浓度会导致磷酸盐改性方解石对水中磷酸盐的去除率过低。磷酸盐改性方解石对水中磷酸盐的去除能力随反应温度的升高而增加。磷酸盐改性方解石对水中磷酸盐的去除动力学可以较好地采用准二级动力学模型加以描述。水中共存的钙离子有利于磷酸盐改性方解石对磷酸盐的去除,而水中共存的碳酸氢根离子抑制了磷酸盐改性方解石对磷酸盐的去除。磷酸盐改性方解石去除水中磷酸盐的主要机制是磷酸钙沉淀作用。磷酸盐改性方解石不仅会为磷酸钙沉淀反应的异质成核提供核心,促进磷酸钙沉淀的形成,而且当水处于对方解石不饱和状态时会溶解释放出可溶性钙,为磷酸钙沉淀的形成提供钙源。上述结果表明,方解石去除水中磷酸盐后的产物可以被再次用于水中磷酸盐的去除,并且对磷酸盐的去除效果优于原始的方解石。  相似文献   

2.
Biosorption of Zn2+ from aqueous solutions by biomass of Agaricus bisporus was investigated. The removal rates of Zn2+ by A. bisporus under different parameters (e.g., solution pH, bio-sorbent dosage and initial Zn2+ concentration) were studied. The inhibition of A. bisporus’s biosorption by anionic ligands EDTA (Ethylene Diamine Tetraacetic Acid), acetate and citrate) implied that EDTA and citrate might be used as eluting reagents. Regular and simultaneous solution pH change and light metal ions release after biosorption indicated that an ion exchange mechanism was involved. From FT-IR (Fourier Transform Infrared) spectroscopy, the main functional groups participated in biosorption were found. Biosorption of Zn2+ by A. bisporus could be well described by the Freundlich and Langmuir models. In conclusion, the biomass of A. bisporus showed high potential for the treatment of wastewater containing Zn2+.  相似文献   

3.
Polyethylenimine (PEI)-modified chitosan was prepared and used to remove clofibric acid (CA) from aqueous solution. PEI was chemically grafted on the porous chitosan through a crosslinking reaction, and the effects of PEI concentration and reaction time in the preparation on the adsorption of clofibric acid were optimized. Scanning electron microscopy (SEM) showed that PEI macromolecules were uniformly grafted on the porous chitosan, and the analysis of pore size distribution indicated that more mesopores were formed due to the crosslinking of PEI molecules in the macropores of chitosan. The PEI-modified chitosan had fast adsorption for CA within the initial 5 h, while this adsorbent exhibited an adsorption capacity of 349 mg· g^-1 for CA at pH 5.0 according to the Langmuir fitting, higher than 213 mg· g^-1 on the porous chitosan. The CA adsorption on the PEI- modified chitosan was pH-dependent, and the maximum adsorption was achieved at pH 4.0. Based on the surface charge analysis and comparison of different pharmaceu- ticals adsorption, electrostatic interaction dominated the sorption of CA on the PEI-modified chitosan. The PEI- modified chitosan has a potential application for the removal of some anionic rnicropollutants from water or wastewater.  相似文献   

4.
Polysaccharide natural seed coat from the tree Magonia pubescens, in the form of hydrogel was used to remove metals in aqueous solution. Swelling tests indicate that seed coat presents hydrogel behavior, with maximum water absorption of 292 g water/g. Adsorption experiments performed using Na+, Mg2+, K+, Ca2+, Cr3+, Fe3+ and Zn2+ demonstrated that the polysaccharide structure has a high capacity to extract these ions from the aqueous solution. Scanning electron microscopy revealed significant morphological changes of the material before and after water contact. Differential scanning calorimetry measurements indicate a signal shift of the water evaporation temperature in the material with adsorbed zinc. X-ray photoelectron spectroscopy analysis combined with theoretical studies by the density functional theory and on Hartree–Fock (HF) level evidence that the metallic ions were adsorbed through coordination with hydroxyl groups of polysaccharide. In the case of Zn2+ the lowest HF energy was observed for the tetracoordination mode, where Zn2+ is coordinated by two hydroxyl groups and two water molecules.  相似文献   

5.
The adsorption of sulfadiazine onto kaolinite clay as an alternative adsorbent was examined in aqueous solution, hnpacts of the contact time, pH, temperature, ionic strength and coexistent surfactants on the adsorption process were evaluated. The pH significantly influenced the adsorption process, with adsorption being promoted at lower pH due to the cation exchange mechanism. Decreasing ionic strength in the solution was favorable for adsorption, and the addition of cationic and anionic surfactants had negative effects on the adsorption capacity of sulfadiazine on kaolinite. Kinetic experiments showed that the adsorption followed the pseudo-second-order model. The equilibrium adsorption was well described by both Freundlich and Dubinin-Radushkevich (DR) models. According to the DR model, the adsorption mechanism was determined by cationic exchange and weak physical forces. The thermodynamic study showed that sulfadiazine adsorption onto kaolinite was a sponta- neous and endothermic reaction.  相似文献   

6.
A novel composite adsorbent, hydroxyapatite/manganese dioxide (HAp/MnO2), has been developed for the purpose of removing lead ions from aqueous solutions. The combination of HAp with MnO2 is meant to increase its adsorption capacity. Various factors that may affect the adsorption efficiency, including solution pH, coexistent substances such as humic acid and competing cations (Ca2+, Mg2+), initial solute concentration, and the duration of the reaction, have been investigated. Using this composite adsorbent, solution pH and coexistent calcium or magnesium cations were found to have no significant influence on the removal of lead ions under the experimental conditions. The adsorption equilibrium was described well by the Langmuir isotherm model, and the calculated maximum adsorption capacity was 769 mg·g−1. The sorption processes obeyed the pseudo-second-order kinetics model. The experimental results indicate that HAp/MnO2 composite may be an effective adsorbent for the removal of lead ions from aqueous solutions.  相似文献   

7.
Hexahedron-like BiPO4 microcrystals were sucessfully synthesized via a template-free hydrothermal method. The resulting samples were characterized by Xray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The BiPO4 samples were of pure monoclinic phase, and the initial amount of PO3–4 during synthesis did not show obvious effect on the phase properties of the materials. The hexahedron-like BiPO4 microcrystal had explicitly cut edges, and its thickness was about 1 μm. The photocatalytic performance of the BiPO4 catalysts was evaluated by photodegradation of RhB under UV light irradiation with commerial Degussa P25 TiO2 as reference. Compared with P25, the BiPO4 catalysts displayed higher photocatalytic activity, with 98.7% of RhB degraded during 60-min experiment. Cost evaluation analysis was adopted to describe the energy consumption of the degradation process, and the results suggested the potential application of this material in the field of dye-contaminated wastewater treatment or environmental matrices remediation.  相似文献   

8.
Biosorption of colours is an important technology for treatment of different types of industrial wastewaters containing dyes. The objective of this study was to convert green alga Ulva lactuca to dye adsorbents for wastewater treatment. The importance of commonly available green alga Ulva lactuca was investigated as viable biomaterials for the biological treatment of synthetic basic blue 9 (5-ch1oro-N,N,N',N'-tetramethyl-5λ4-phenothiazine-3,7-diamine) effluents. The results obtained from the batch experiments revealed the ability of the green algae to remove the basic blue 9, and this was dependent on the dye concentration, pH, and algal biomass. We investigated the equilibrium and kinetics of adsorption, and the Langmuir and Freundlich equations were used to fit the equilibrium isotherm. The adsorption isotherm of basic blue 9 followed both the Langmuir and Freundlich models with a correlation coefficient of ∼0.96-0.99, and the adsorption kinetics followed the pseudo-second-order model (R2=1.0). The maximum adsorption capacity was about 40.2 mg of dye per gram of dry green algae at pH 10, 25 g l-1 dye and 2.5 g l-1 alga concentrations. This study demonstrated that the green algae could be used as an effective biosorbent for the treatment of dye-containing wastewater streams.  相似文献   

9.
Aqueous biphasic systems (ABSs) composed of polyethylene glycol (PEG) and salt have been examined for the removal of textile dyes from textile effluent. The partitioning of four dyes namely Cibacron Scarlet LS 2G, Rhodamine B, Brown ERN and Astacryl Red 3B was investigated. All the dyes studied were found to partition into the upper PEG rich layer. Sodium carbonate was found to be the most efficient salt for extraction of dyes. Sodium sulphate was found to be marginally less efficient. Sodium chloride did not cause partitioning at all. Partitioning occurred at all pH and was almost pH independent. The partitioning of these dyes in larger volume (100?mL) ABS was also demonstrated. Studies using dye bath effluent were also conducted. In all cases very high efficiencies consistently above 98% were obtained.  相似文献   

10.
The adsorption of acid brown 75 onto kaolinite in aqueous solution was studied with respect to the pH, adsorbent dosage, contact time, initial concentration, and operating temperature. Desorption of dye from dye-saturated kaolinite was observed. Experimental data indicated that the adsorption capacity of kaolinite for the dye was higher in acidic rather than in basic solution. The maximum adsorption capacity of kaolinite towards the dye was found to be 96.5 mg g?1 (pH 1.0). At the optimal adsorption condition, the dye removal ratio was 95.5%. Dye-saturated kaolinite could desorb at aqueous NaOH, the desorption ratio of dye was 78.8%. The linear Langmuir and Freundlich isotherm models are well fitting to represent the experimental data.  相似文献   

11.
以油页岩渣及其二氧化钛改性材料为吸附剂,探究它们去除水溶液中亚甲基蓝和六价铬的能力.通过实验,控制溶液的pH值、温度、初始浓度和接触时间,观察吸附效果变化特征,研究其动力学和热力学性能.实验表明,改性油页岩渣吸附亚甲基蓝和六价铬的吸附率是未改性的2—3倍,且改性油页岩渣对亚甲基蓝的吸附率可达97%,对六价铬的吸附率不到25%.吸附亚甲基蓝时,pH值越大,吸附效果越好;而吸附六价铬时,最适pH值为4.改性油页岩渣吸附亚甲基蓝实验符合准二阶动力学方程,计算得反应活化能为13.29 kJ.mol-1,表明此过程主要是物理吸附.在热力学方面,由范特霍夫方程计算得ΔG〈0、ΔH〉0,表明此过程自发吸热,可见此过程还伴有化学吸附.Langmuir和Freundlich等温模型拟合结果表明,Langmuir模型数据拟合甚佳,R2=0.9999,说明改性油页岩渣吸附亚甲基蓝是单分子层吸附.二氧化钛改性油页岩渣经7次回收利用后,对亚甲基蓝的吸附效果仅减少约1.5%.  相似文献   

12.
Highly activated carbon from the seed husk of Casuarina Casuarinas equisetifolia, a worldwide famous plant, have been prepared and tested for the removal of toxic Cr(VI) from its aqueous solution. The adsorbent was investigated for influences of initial chromium concentration (75, 100, 125, and 150 mg l-1), pH, contact time, and quantity of carbon on removal of Cr(VI) from aqueous solution at room temperature (25±2 °C). The adsorption kinetic of Cr(VI) was studied, and the rates of sorption were found to conform to pseudo-second-order kinetics with a good correlation (R2≥0.99). The Langmuir and Freundlich models fit the isotherm data well. Furthermore, the Gibbs free energy was obtained for each system and was found to be-5.29 kJ mol-1 for removal of Cr(IV). The negative value of Δ G° indicates the feasibility and spontaneous nature of adsorption. The results indicate that acidic pH (1.05) supported the adsorption of Cr(IV) on activated carbon. The maximum adsorption capacity of Cr(VI) on activated carbon was about 172.4 mg g-1 at pH 1.05.  相似文献   

13.
Humic acid (HA) was impregnated onto powdered activated carbon to improve its Cu(II) adsorption capability. The optimum pH value for Cu(II) removal was 6. The maximum adsorption capacity of HAimpregnated activated carbon was up to 5.98mg.g-1, which is five times the capacity of virgin activated carbon. The adsorption processes were rapid and accompanied by changes in pH. In using a linear method, it was determined that the equilibrium experimental data were better represented by the Langmuir isotherm than by the Freundlich isotherm. Surface charges and surface functional groups were studied through zeta potential and FTIR measurements to explain the mechanism behind the humicacid modification that enhanced the Cu(II) adsorption capacity of activated carbon.  相似文献   

14.
The technical feasibility of utilization of fly ash as a low-cost adsorbent for the removal of metals from water has been studied. For two types of fly ashes, the retention capacities of copper, lead, and zinc metal ions have been studied. Contact time, initial concentration, and pH have been varied and their effect on retention mechanism has been studied. The dominant mechanisms responsible for retention are found to be precipitation due to the presence of calcium hydroxide, and adsorption due to the presence of silica and alumina oxide surfaces in the fly ash. First-order kinetic plots have revealed that the rate constant increases with increase in the initial concentration and pH. Langmuir adsorption isotherms have been plotted to study the maximum adsorption capacities for metal ions considered under different conditions. X-ray diffraction studies revealed the formation of new peaks corresponding to respective metal ions precipitates under alkaline conditions.  相似文献   

15.
Arsenic (V) adsorption on manganese oxide coated rice wastes was investigated in this study. The modified adsorbents were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and pH measurements to determine the point of zero charge. Batch adsorption equilibrium experiments were conducted to study the effects of pH, contact time, and initial concentration on arsenic removal efficiency. The adsorption capacity of rice waste was significantly improved after modification with permanganate. The Langmuir isotherm model fitted the equilibrium data better than the Freundlich model which confirms surface homogeneity of the adsorbent. Maxima adsorption capacities are determined as 10 and 12 mg/g at pH 3 for manganese oxide coated rice husk and straw, respectively. The adsorption energy indicates that the adsorption process may be dominated by chemisorption. Pseudo-second-order rate equation described the kinetics sorption of arsenic with good correlation coefficients, better than a pseudo-first-order equation. Manganese oxide coated rice husk and straw appear to be promising low cost adsorbents for removing arsenic from water.  相似文献   

16.
Benzene removal evaluated using Fe304 nano continuous condition. A 44 initial benzene concentration, from aqueous solutions was magnetic particles (NM) in factorial design including NM dose, contact time and pH was investigated in 16 experiments (Taguchi OA design). The results indicated that all factors were significant and the optimum condition was: pH 8, NM dose of 2000 mg.L-1, benzene concentrations of 100 mg.L-1 and contact time of 14min. The maximum benzene uptake and distribution ratio in the optimum situation were 49.4mg.g-1 and 38.4L.g-1, respectively. The nano particles were shown to capture 98.7% of the benzene in optimum batch condition and 94.5% in continuous condition. The isotherm data proved that the Bmnauer-Emmett-Teller model fit more closely and produced an isotherm constant (b) less than one, indicating favorable adsorption. Regeneration studies verified that the benzene adsorbed by the NM could be easily desorbed by temperature, and thereby, NM can be employed repeatedly in water and wastewater management.  相似文献   

17.
Biosorption studies of Cr(VI) were carried out using waste weed, Salvinia cucullata. Various adsorption parameters were studied, such as agitation speed, contact time, pH, particle size, and concentrations of adsorbent and adsorbate. The equilibrium was achieved in 12 h. A lower pH favoured adsorption of Cr(VI). The kinetics followed pseudo-second-order rate equations. The adsorption isotherm obeyed both the Langmuir and Freundlich models. The calculated activation energy (1.1 kJ mol-1) suggested that the adsorption followed a diffusion-controlled mechanism. Various thermodynamic parameters such as Δ G°, Δ H°, and Δ S° were also calculated. The positive values of enthalpy indicated the endothermic nature of the reaction, and Δ S° showed the increasing randomness at the solid liquid interface of Cr(VI) on the adsorbent, which revealed the ease of adsorption reaction. These thermo-dynamic parameters showed the spontaneity of the reaction. The maximum adsorption of uptake (232 mg g-1) compared well with reported values of similar adsorbents. The rate-determining step was observed to follow an intra-particle diffusion model.  相似文献   

18.
This communication presents a preliminary study conducted to investigate dye (Direct Brown 2‐Diazo) colour removal using viable algae Spirogyra species. The results indicate the ability of algae Spirogyra species to remove dye colour and found to be dependent on the contact time and biomass. Colour removal mechanism by algae Spirogyra species may be attributed to biosorption and/or bioconversion and/or biocoagulation.  相似文献   

19.
This work is dedicated to the removal of free cyanide from aqueous solution by oxidation with hydrogen peroxide H2O2 catalyzed by neutral activated alumina. Effects of initial molar ratio [H2O2]0/[CN?]0, catalyst amount, pH, and temperature on cyanide removal have been examined. The presence of activated alumina has increased the reaction rate showing thus, a catalytic activity. The rate of removal of cyanides increases with rising initial molar ratio [H2O2]0/[CN?]0 but decreases at pH 10 to 12. Increasing the alumina amount from 1.0 to 30 g/L has a beneficial effect, and increasing the temperature from 20 °C to 35 °C improves cyanide removal. The kinetics of cyanide removal has been found to be of pseudo-first-order with respect to cyanide and the rate constants have been determined.  相似文献   

20.
• VFCWs are effective for the treatment of arsenic-containing wastewater. • Arsenic removal did not affect the removal of nutrients, except for TP in CW500. • Arsenic removal was highest when the temperature peaked and the reed was in bloom. • Substrate accumulation contributed more to arsenic removal than plant absorption. Four pilot-scale Vertical Flow Constructed Wetlands (VFCWs) filled with gravel and planted with Phragmites australis were operated for seven months in the field to study the efficiency of arsenic removal in contaminated wastewater. The average arsenic removal efficiency by the VFCWs was 52.0%±20.2%, 52.9%±21.3%, and 40.3%±19.4% at the theoretical concentrations of 50 μg/L (CW50), 100 μg/L (CW100), and 500 μg/L (CW500) arsenic in the wastewater, respectively. The results also showed no significant differences in the removal efficiency for conventional contaminants (nitrogen, phosphorus, or chemical oxygen demand) between wastewater treatments that did or did not contain arsenic (P>0.05), except for phosphorus in CW500. The highest average monthly removal rate of arsenic occurred in August (55.9%–74.5%) and the lowest in November (7.8%–15.5%). The arsenic removal efficiency of each VFCW was positively correlated with temperature (P<0.05). Arsenic accumulated in both substrates and plants, with greater accumulation associated with increased arsenic concentrations in the influent. The maximum accumulated arsenic concentrations in the substrates and plants at the end of the experiment were 4.47 mg/kg and 281.9 mg/kg, respectively, both present in CW500. The translocation factor (TF) of arsenic in the reeds was less than 1, with most of the arsenic accumulating in the roots. The arsenic mass balance indicated that substrate accumulation contributed most to arsenic removal (19.9%–30.4%), with lower levels in plants (3.8%–9.5%). In summary, VFCWs are effective for the treatment of arsenic-containing wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号