首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel semi-interpenetrating network (semi-IPN) hydrogels based on biodegradable chitosan and poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid) were prepared by free radical addition polymerization. Fourier transform infrared spectra and scanning electron microscopy were used to characterize the semi-IPN hydrogels and the results showed that chitosan and poly(N-isopropylacrylamide-co-2-acrylamide-2-methyl-1-propanesulfonic acid) semi-IPN hydrogels were coupled by the interaction of the functional groups present in NIPAAm, CS and AMPS units. The PNIPAAm and P(NIPAAm-AMPS)/CS hydrogels have lower critical solution temperature and the same was confirmed with the help of differential scanning calorimetry as well as with the temperature dependent swelling curves. The model anti cancer drug, 5-fluorouracil (5-FU) was loaded into the semi-IPN hydrogels, at ambient temperature. The 5-FU loading capacity and release behaviour were investigated with these hydrogels acting as carriers for controlled release. The released 5-FU concentration was calculated with the help of UV spectrophotometer at 266.5?nm.  相似文献   

2.
Controlled release fertilizer (CRF) hydrogels were prepared from poly(vinyl alcohol), poly(vinyl alcohol)/chitosan and chitosan using glutaraldehyde as a crosslinker. Intermolecular interactions of the CRF hydrogels were elucidated using FTIR. Water absorbency characteristics of the CRF hydrogels were also studied. It was found that the CRF hydrogels exhibited the equilibrium swelling ratio (SR) in the range 70–300%. The water retention of soil containing the CRF hydrogels was also examined. It was found that the CRF hydrogels increased the water retention of the soil. After 30 days, soil containing the PVA-, PVA/CS- and CS-hydrogels showed the water retention capacities of 25%, 10% and 4%, respectively. While the soil without the CRF hydrogel had already given off most of the water. The release behavior of potassium from the CRF hydrogels, both in deionized water and in soil, was investigated. In soil, the potassium release mechanism from the PVA- and PVA/CS-hydrogels were non-Fickian diffusion. On the other hand, the CS hydrogel showed, n value that was close to 1.0 corresponding to case II transport. In deionized water, all the CRF hydrogels showed small values of release exponent (n < 0.5) indicating a quasi-Fickian diffusion mechanism.  相似文献   

3.
Poly(vinyl alcohol) (PVA) hydrogels were chemically cross-linked with/without different cross-linkers such as glutaraldehyde and epichlorohydrin, in the presence of a catalyst, or activator (potassium hydroxide) to produce three types of hydrogels. The structures of PVA and the prepared gel types were determined by FTIR spectroscopy, the mechanical and thermal properties, of these hydrogels were examined. The effects of different pH values and temperatures on the swelling properties of the prepared gels were examined. From the obtained results, it was found that, the low concentration of the cross-linker produced hydrogel with moderate properties, but in absence of the cross-linker, the obtained hydrogel exhibited good properties and can be used as friendly environmentally moisture absorbents from the organic solvents. The insolubility and swelling properties of gels were tested in these solvents. The results indicated that these hydrogels can be used as moisture absorbents and solvent dryers.  相似文献   

4.
Hydrogels are in use for encapsulation of curcumin for possible use in wound healing. Encapsulation helps in targeted delivery and enhanced activity of curcumin. We report here a pH sensitive hydrogel developed from chitosan. The hydrogel was prepared by reaction of chitosan and d-glucose, facilitated by the reducing agent Na-cyanoborohydride. The maximum yield of the hydrogel was obtained at pH 4.5 with the amount of chitosan, d-glucose and Na-cyanoborohydride as 0.3, 2.0 and 2.0 g respectively. A maximum curcumin loading efficiency of 74% was observed with curcumin amount in the feed at 0.15 g. The release study revealed a sustained release pattern over a period of 80 h with an initial burst release. Curcumin loaded hydrogel showed mild antibacterial activity against Proteus mirabilis and Enterobacter aerogenes.  相似文献   

5.
In the study, chitosan chemically extracted from Metapenaeus stebbingi shells obtained from shrimp processing factories and commercial chitosan were used as antimicrobial materials. Antimicrobial activities of the chitosans dissolved in acetic, lactic, formic and hydrochloric acid at different concentrations (1.00, 0.50, 0.25, 0.10 and 0.05%) were tested in vitro by using the disk diffusion method with standard microorganisms (Pseudomonas putida, Pseudomonas fluorescens, Vibrio parahaemolyticus, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli 1, Escherichia coli 2, Listeria monocytogenes, Enterecoccus faecalis, Aeromonas caviae). On the other hand, gentamicin was used as positive control. Antimicrobial test results indicated that chitosan demonstrated different effects depending on the chitosan concentration, solvent material and bacteria type. In the present study, both the extracted and commercial chitosans were observed to have antimicrobial effects on nearly all types of the bacteria.  相似文献   

6.
Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.  相似文献   

7.
Prevailing scenario of non-biodegradable food packaging materials worldwide was the motivation for this research. More than half of the packaging materials used today are non-biodegradable and lack one or the other feature that keeps it from being an ideal food packaging material. Based on the current need of food grade packaging materials, the present study illustrates the amelioration of the properties of biodegradable chitosan films with the incorporation of zinc oxide (ZnO) nanoparticles in varying concentration. The ZnO nanoparticles (ZnONPs) used as fillers in the chitosan films were synthesized by supersaturation method. They were characterized using UV–visible spectrophotometry, X-ray diffraction and field emission scanning electron microscopy (FE-SEM). The particles were observed to be around 100–200 nm in size. The chitosan films with varying concentration of ZnONPs were synthesized and characterized using Fourier transform infrared spectroscopy and FE-SEM. The films were studied for their thermal stability, water vapor transmission rate (WVTR) and mechanical properties. The thermal stability, as determined by Thermo Gravimetric Analysis and Differential Scanning Calorimetry increased slightly with increasing percentage of embedded ZnONPs while a substantial decrease in WVTR was observed. Mechanical properties also showed improvements with 77% increment in tensile modulus and 67% increment in tensile strength. The antimicrobial activity of the films was also studied on gram positive bacterium Bacillus subtilis (B. subtilis) and gram negative bacterium Escherichia coli (E. coli) by serial dilution method. A twofold and 1.5-fold increment in the antimicrobial activity was observed for B. subtilis and E. coli, respectively, with increased ZnONPs concentration in the films from 0(w/w) to 2%(w/w). Films thus prepared can prove to be of immense potential in the near future for antimicrobial food packaging applications.  相似文献   

8.
Novel type of highly swollen beads were prepared by grafting 2-hydroxyethylacrylate onto biodegradable Sodium alginate (SA) via free-radical polymerization using potassium persulphate as an initiator and Triprolidine hydrochloride as a model drug. Evidence of grafting was obtained by fourier transform infrared spectroscopic technique. Morphological properties of the beads were studied by SEM analysis. Thermal properties and crystallinity of the beads were characterized using differential scanning calorimetry and thermogravimetric analysis and X-ray diffraction techniques, respectively. Dissolution experiments were performed to study the release profiles at 37?°C in phosphate buffer solution (pH-7.4). Effect of monomer content, crosslinking agent and drug/polymer ratio on swelling properties and release profiles were also comparatively studied. A dissolution result concludes that drug release decreases with increasing crosslinker content. The highest release (96%) was obtained for the beads prepared with 0.5?mL crosslinking agent. Equilibrium swelling degree also supports the drug release profiles confirming SA-g-HEA beads showed better release profiles compare to plain SA beads.  相似文献   

9.
Electro conductive hydrogels, consisting of chitosan (CS), hyaluronic acid (HA), and polypyrrole (PPy), were prepared via an in situ enzymic polymerization of pyrrole in the CS–HA hydrogel, using laccase as the catalyst. This CS–HA–PPy composite hydrogel showed good conductivity. The chemical structure and morphology of this conductive hydrogel were studied by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction technique. For CS–HA–PPy and CH–HA hydrogel, the temperature at which fastest decomposition occurred was 260 and 244 °C, respectively. That means the thermal stability of CS–HA–PPy is better than CS–HA hydrogel. The conductive hydrogel also showed excellent swelling and deswelling behaviors.  相似文献   

10.
Journal of Polymers and the Environment - Present work aims to synthesize the herbicide-loaded bio-based hydrogels and study the release mechanism. The different ratios of starch and chitosan were...  相似文献   

11.
Ciprofloxacin (CF) loaded biodegradable microspheres of Poly(lactide-co-caprolactone)-PF127 (a poloxamer block copolymer of Ethylene Oxide/Propylene Oxide) were prepared by using solvent evaporation technique. The microspheres were characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (X-RD) technique to confirm the polymorphism of ciproflaxacin (CF) drug. The X-RD and DSC techniques indicated molecular level dispersion of CF in the microspheres. Scanning electron micrographic images (SEM) of the microspheres indicated smooth surfaces of the spherical microspheres. Cumulative release characteristics of the matrices for CF, the antibiotic drug, were investigated in pH 7.4 media. It was possible to release CF in controlled manner up to 72 h. The developed ciprofloxacin loaded Poly(lactide-co-caprolactone)-PF127 microspheres were evaluated for preliminary antibacterial applications.  相似文献   

12.

In this study, it was aimed to investigate the synthesis, characterization and drug release behaviors of organo-hydrogels containing pH-sensitive Agar (A), Glycerol (G), Sweet Almond oil (Wu et al. in J Mol Struct 882:107–115, 2008). Organo-hydrogels, which contained Agar, Glycerol and different amounts of Sweet Almond oil, were synthesized via the free-radical polymerization reaction with emulsion technique using glutaraldehyde or methylene bis acrylamide crosslinkers. Then, the degree of swelling, bond structures, blood compatibility and antioxidant properties of the synthesized organo-hydrogels were examined. In addition, Organo-hydrogels which loaded with Ceftriaxone and Oxaliplatin were synthesized with the same polymerization reaction and release kinetics were investigated. In vitro release studies were performed at media similar pH to gastric fluid (pH 2.0), skin surface (pH 5.5), blood fluid (pH 7.4) and intestinal fluid (pH 8.0), at 37 °C. The effects on release of crosslinker type and sweet almond oil amount were investigated. Kinetic parameters were determined using release results and these results were applied to zero and first-order equations and Korsmeyer-Peppas and Higuchi equations. Diffusion exponential was calculated for drug diffusion of organo-hydrogels and values consistent with release results were found.

  相似文献   

13.
The crosslinking of chitosan with cyanoguanidine shows some advantages, such as the improved the stability in acid solutions and the decrease of adsorbent cost. In this work, cyanoguanidine-crosslinked chitosan and pure chitosan were prepared to apply in the adsorption of Food Yellow 4 (FY4) and Food Blue 2 (FB2), in single and binary systems. Effects of pH and deacetylation degree (DD) of chitosan in adsorption were evaluated. The adsorbents were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The kinetic data were analyzed by pseudo-first order, pseudo-second order and Avrami models. The conditions of pH 3 and DD 95% were the more suitable to reach the highest adsorption capacities in all experimental assays. Under these conditions, the adsorption capacities for FY4 were approximately of 392 and 200 mg g?1 and, for FB2 were approximately of 370 and 184 mg g?1, respectively, in the single and binary systems. The Avrami model was suitable to represent the kinetic curves in all conditions, and the highest adsorption capacities were found for FY4 in binary aqueous system, being for the pure chitosan of 229 mg g?1 and crosslinked chitosan of 218 mg g?1. The Langmuir and extended Langmuir models presented a good fit to the equilibrium data in both systems. It was found that, the chitosan crosslinked with cyanoguanidine improved the chemical stability of chitosan as adsorbent.  相似文献   

14.
周耀珍  姚春才  方年 《化工环保》2014,34(2):170-175
以壳聚糖为原料、二甲基二烯丙基氯化铵(DMDAAC)为接枝单体、甲醛为预交联剂、环氧氯丙烷为交联剂,通过反相乳液聚合制备出交联壳聚糖季铵盐吸附剂,并将其用于吸附Ni(Ⅱ)和Cr(Ⅵ)。考察了吸附时间、溶液初始浓度、溶液pH等因素对吸附效果的影响。实验结果表明:该吸附剂对Ni(Ⅱ)和Cr(Ⅵ)的吸附过程遵循拟二级动力学方程,吸附等温线符合Langmuir方程;在30 ℃条件下,Ni(Ⅱ)和Cr(Ⅵ)的溶液初始浓度均为1 mmol/L时,该吸附剂吸附Ni(Ⅱ)和Cr(Ⅵ)的最佳溶液pH分别为7和6,对应的平衡吸附量分别为1.18,1.99 mmol/g;该吸附剂可用盐酸再生,重复使用性能良好。  相似文献   

15.
Chitosan fibers were prepared by wet spinning in three stages. Initially, a polymer solution of chitosan and polyvinyl alcohol (PVA) was solidified in a mixture of potassium hydroxide and ethanol. The polymers were then crosslinked with sodium tripolyphosphate (TPP) or glutaraldehyde, and finally dried in methanol or acetone. The effect of these conditions was evaluated based on scanning electron microscopy images, water-holding capacity, and swelling and mechanical properties. The miscibility of the mixture was evaluated using Fourier Transform Infrared spectroscopy and differential scanning calorimetry. The results obtained showed that chitosan fibers containing 45% (v/v) PVA and crosslinked using TPP have properties similar to those of commercial sutures prepared using other biomaterials.  相似文献   

16.
Depending on the modifications proposed, chitosan films present different characteristics, for instance correlated to hydrophilicity, chemical and mechanical properties. The aim of this study was to evaluate the influence of glutaraldehyde crosslinking and an alkaline post-treatment with NaOH on the characteristics of chitosan based films. Films were obtained by casting and characterized by thickness, swelling degree, mechanical and thermal properties and chemical structure. The water vapor permeability (WVP) was also evaluated for food packaging application. It was observed that crosslinking and NaOH post-treatment have great influence on the chitosan films characteristics. Crosslinking reduced the swelling degree of films and increased its fragility, whereas NaOH treatment also reduces the swelling degree and changes mechanical properties, acting in the same way as a crosslinker. The WVP analyses showed that the basic treatment could substitute the glutaraldehyde crosslinking for film water stability, without greatly compromising the barrier properties of chitosan based films.  相似文献   

17.
In recent years there is a growing need in generating a biocompatible and cost effective porous scaffold for tissue engineering purposes. Therefore, this study focused on conversion of the shell waste of locally available crab variety P.pelagicus (Blue swimming crab) into the chitosan scaffold. As the poor mechanical strength of chitosan limits its usage in tissue engineering, it was blended with alginate. The scaffolds were prepared by the freeze gelation method which requires less time and minimum energy, with fewer residual solvent and easier to scale up. To the best of our knowledge there are no reports on scaffold preparation from the extracted chitosan, blended with alginate by freeze gelation method. The biological properties of chitosan-alginate scaffolds (Cts–Alg) were evaluated and compared with those of chitosan scaffolds. The prepared scaffolds were characterized by SEM, swelling property, in vitro enzymatic degradation, and hemo, biocompatibility properties. Chitosan-alginate scaffolds had an average pore size of 40 μm and tensile strength of 0.564 ± 0.0.018 % MPa. Its swelling ratio was 27.5 ± 0.28 %, with mass loss percentage of 10 ± 0.33 % after 4 weeks of degradation. It has exhibited good hemocompatible properties too. Mouse fibroblast 3T3 cells were able to adhere and proliferate well in the blended scaffold. All these results indicated that chitosan-alginate scaffold is a suitable alternative substitute for tissue engineering.  相似文献   

18.
Biodegradable hydrogels prepared by -irradiation from microbial poly(amino acid)s are reviewed. pH-sensitive hydrogels were prepared by means of -irradiation of poly(-glutamic acid) (PGA) produced byBacillus subtilis IFO3335 and poly(-lysine) (PL) produced byStreptomyces albulus in aqueous solutions. The preparation conditions, swelling equilibria, hydrolytic degradation, and enzymatic degradation of these hydrogels were studied. A hydrogel with a wide variety of swelling behaviors has been produced by -irradiation from a mixture solution of PGA and PL.Paper presented at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, New Hampshire, USA.  相似文献   

19.
The swelling capability of chitosan was explored in order to use water both, as volatile plasticizer and as pore-forming agent. Chitosan powder was swelled in acidic aqueous solution and melt blended with poly(ε-caprolactone) (PCL). After stabilization at 57% RH and 25 °C, samples suffered a water mass loss of around 30 wt% without dimensions variation. Despite the low miscibility of these biopolymers, quite homogeneous dispersion of chitosan within the polyester matrix was obtained. Some interactions between both biopolymers could be observed. To obtain chitosan phase with a thermoplastic-like behaviour, the plasticization effect was also studied by the addition of 25 wt% glycerol as non volatile plasticizer. The equilibrium moisture content of samples increased with the incorporation of glycerol due to its hydrophilic nature. Morphology, thermal and mechanical properties of the blends were determined after stabilization. The preparation of rich PCL blends allowed the formation of macroporous structures since samples were not contracted after water loss and stabilization. These biomaterials with such a porous structure could be used for biomedical applications.  相似文献   

20.
Jackfruit starch based biodegradable films containing lysozyme were characterized for their antimicrobial activity, thickness, solubility, water vapor permeability and mechanical properties. The biodegradable films had good appearance and antimicrobial activity against Micrococcus lysodeikticus. The thickness of the biodegradable films were not affected by the variation in pH, but the addition of lysozyme increased the thickness, the thickest films being those with the highest lysozyme concentrations. The variation in pH of the filmogenic solutions affected the solubility of the biodegradable films, water solubility being greatest at pH 7.0 and with the highest lysozyme concentration. The permeability of the biodegradable films was increased by incorporating lysozyme. The lysozyme concentration and pH variation caused changes in the mechanical properties. The addition of 8% lysozyme increased the tensile strength and Young’s modulus for all the pH values studied. With respect to the release of antimicrobial activity, the diffusion of lysozyme was shown to follow Fickian transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号