首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
本研究收集黄河中游(渭南—郑州段)表层水样品,利用高效液相色谱质谱串联的方法分析了水相和颗粒相中的28种全氟和多氟烷基化合物(PFASs).结果表明,水相和颗粒相中∑28PFASs的含量(以干重计)分别为18.4~56.9 ng·L-1和26.8~164 ng·g-1.水相和颗粒相中全氟己酸(PFHx A)为主要污染物,分别占总含量的24%和18%,且3H-全氟-3-(3-甲氧基丙氧基)丙酸(ADONA)、氯代多氟醚基磺酸(6:2和8:2 Cl-PFESA)在颗粒相均有检出,表明PFASs替代品的生产和使用逐渐增多.PFASs在水相-颗粒相中的lg Kd变化范围为2.95±0.553(PFPe A)~3.85±0.247(8:2 FTUCA),颗粒物吸附氟调聚羧酸(FTCAs)和不饱和氟调聚羧酸(FTUCAs)的能力随碳链长度的增长而增加,全氟烷基磺酸(PFSAs)较全氟烷基羧酸(PFCAs)更容易被颗粒物吸附.黄河郑州-渭南段PFASs的通量呈现先降低后增加的趋势,表明该河段接纳了来自上游及支流的污染输入.此外,结果表明水相中的PFASs通量大于颗粒相.  相似文献   

2.
电镀是全氟和多氟烷基物质(PFASs)污染的主要来源之一. 目前关于电镀企业周边地表水中的PFASs污染特征报道较为缺乏. 为了解上海市电镀企业周边地表水中PFASs的污染特征与生态风险水平,选取全氟烷基羧酸(PFCAs)、全氟烷基磺酸(PFSAs)、磺酸调聚物以及1-氯-全氟烷基醚磺酸钾(F-53B)等26种典型PFASs为对象,调查其在上海市电镀企业周边地表水中的污染特征,探讨其污染来源并开展初步的生态风险评估. 结果表明:上海市电镀企业周边地表水中∑PFASs浓度范围为93.3~1 334 ng/L,其中大部分地表水中∑PFASs浓度小于300 ng/L,污染最严重的地表水分布于金山区,∑PFASs浓度是背景值的14.8倍. 地表水中全氟辛酸(PFOA)为普遍的主要污染物,其次为短链PFCAs和PFSAs. 1H,1H,2H,2H-全氟辛烷磺酸钠(6∶2 FTS)和F-53B也普遍存在于地表水中,但只在少数地表水中具有较高浓度,尤其是F-53B,其中金山区采样点浓度高达968 ng/L,主要与镀铬业务有关. 这表明短链PFCAs和PFSAs、PFOA、6∶2 FTS及F-53B等均可能已应用于电镀领域. 据污染源特征分析,地表水中PFASs除了受电镀行业的污染外,同时还可能来源于表面处理工业、前体化合物生物降解等. 初步的生态风险评估结果表明,上海市大部分电镀企业周边地表水中生态风险较低,但个别镀铬企业周边地表水中F-53B污染可能产生高生态风险. 研究显示,上海市电镀企业周边地表水中存在一定程度的PFASs污染,污染水平与特征差异较大;其中PFOA是电镀企业周边地表水中普遍存在的主要污染物,但生态风险较低;而F-53B在个别采样点中具有高残留、高生态风险,需加强污染防控.   相似文献   

3.
孙琳婷  赵祯  唐建辉 《环境科学》2020,41(9):4069-4075
采用超高效液相色谱/质谱联用(UPLC/MS-MS)分析了我国重要的氟化物工业园区周边河流——辽宁细河(阜新段)、山东小清河(淄博段)和长江(江苏常熟段)表层沉积物中全(多)氟烷基化合物(PFASs)的污染状况.细河表层沉积物中,PFASs含量范围(以干重计,下同)为15.8~2 770 ng·g~(-1),全氟丁烷磺酸(PFBS)和六氟环氧丙烷二聚酸(HFPO-DA)是主要污染物;小清河表层沉积物中,PFASs含量为12.2~7 853 ng·g~(-1),全氟烷基辛酸(PFOA)和HFPO-DA为主要污染物;长江表层沉积物中,PFASs含量为9.20~35.9 ng·g~(-1),全氟十四酸(PFTeDA)和6∶2氟调磺酸(6∶2FTS)为主要污染物.工业园区废水排放(点源污染)是本研究中3个区域PFASs的主要来源. 3个区域PFASs含量及组成差异明显,与工业园区生产规模和产业类型有关.PFASs含量及各组分含量与TOC、沉积物粒径没有显著相关性,PFASs各组分间相关性也有差异,说明PFASs在沉积物中的富集过程与多种因素有关.  相似文献   

4.
给水管网中普遍存在铁颗粒物,对水中微量污染物可能产生富集作用,然而铁颗粒物对全氟烷基和多氟烷基物质(PFASs)的富集机制及其水质健康风险仍有待深入研究.本文探究了Fe(II)生成铁颗粒物的过程中对PFASs的富集性能,发现在铁离子原位形成铁颗粒物的过程中,对长碳链全氟化合物的富集性能比短碳链全氟化合物更高.对PFASs的富集导致铁颗粒物粒径增大,未加入PFASs的样品反应后颗粒物平均粒径约为8.03μm,反应后除全氟丁磺酸组之外其他样品粒径均在10.6μm以上.此外,还发现4种PFASs存在下均能提升铁颗粒物对消毒副产物生成的促进作用,全氟辛酸、全氟辛磺酸、全氟丁酸、全氟丁磺酸存在下消毒副产物的生成量分别提升了35.5%±1%、63.3%±0.4%、41.6%±0.5%、18.1%±0.1%.消毒副产物浓度和铁颗粒物粒径呈现良好的线性正相关,线性拟合系数R2为0.8546.X射线衍射表征表明,PFASs提升了铁颗粒物晶体中FeOOH的含量.由此可见,铁颗粒物对PFASs的富集能够促进给水管网中消毒副产物的生成,从而进一步加剧水质风险.  相似文献   

5.
采用超高效液相色谱串联质谱分析了四川省岷江流域水体中13种全氟化合物(PFASs)的浓度水平.结果表明,岷江流域水相中PFASs的浓度为1.54~30.2ng/L,平均值为(11.2±8.0)ng/L,浓度最高点出现在乐山下游(30.2ng/L).其中,岷江流域水相中最主要的PFASs为全氟丁烷羧酸(PFBA),浓度为0.16~28.4ng/L,占总全氟化合物的54.0%~94.1%(都江堰除外).岷江流域沉积物中PFASs浓度最高点在宜宾三江(岷江、金沙江和长江)汇合处(47.5ng/g dw),最低值在都江堰(0.334ng/g dw).其中,主要的PFASs是全氟己烷羧酸(PFHxA)(4.44%~66.9%)和全氟辛烷羧酸(PFOA)(1.52%~77.5%).岷江流域PFASs的年排放通量为1.443t/a,排放通量最高的为PFBA(1.037t/a),占总排放通量的71.9%.  相似文献   

6.
为阐明南太湖地区传统和新兴的全氟和多氟烷基物质(PFASs)的残留分布,并分析这类污染物对当地人类的潜在健康风险,本研究检测了从中国南太湖流域采集的6种常见可食用鱼的4种组织(肝脏、肾脏、脾脏和肌肉)中的PFASs浓度.在所有鱼类组织中,全氟辛烷磺酸(PFOS)以483 ng·g-1湿重的高浓度占据主导地位,其次是全氟壬酸(PFNA)、全氟十一酸(PFUnDA)和全氟十二酸(PFDA)也拥有较高浓度.与传统全氟烷基酸(PFAAs)相似,新兴污染物6∶2氟调聚物磺酸盐(6∶2 FTS)和8∶2氟调聚物磺酸盐(8∶2 FTS)在鱼的肝脏中含量最高,然而全氟辛烷磺酰胺(PFOSA)在肾脏和脾脏中含量较高,这可能是由于其在鱼体内发生生物转化.鱼类体内的PFAS浓度可能与鱼类生活的水位和捕食习惯有关,在中下层水域活动的底栖肉食性鱼类体内的PFAS浓度更高.经计算,所有鱼类的全氟辛烷羧酸(PFOA)和PFOS的危害比(HRs)分别为0~0.0134和0.660~1.54,在6种鱼类中,花?和红鳍鲌的HRs超过1.0,这意味着经常食用这两种从南太湖采集的鱼类,可能危害食用者的身...  相似文献   

7.
为掌握贡嘎冰川水环境中全氟及多氟烷基化合物(PFASs)的赋存特征,本文采用超高效液相色谱-质谱联用仪(UPLC-MS/MS)分析了贡嘎山海螺沟地区不同水样中21种PFASs的浓度水平.结果显示,11种PFASs有所检出,Σ21PFASs的浓度范围为7.09~106ng/L,平均值为30.2ng/L,主要PFASs为全氟丁酸(PFBA,131ng/L)、全氟辛酸(PFOA,37.2ng/L)和全氟辛烷磺酸(PFOS,17.1ng/L).本研究中E21PFASs浓度最高点位于海拔2735m的草海子地区,为106ng/L.贡嘎海螺沟地区无直接排放源,但在降雨中检测出较高浓度的PFASs,表明海螺沟水环境中PFASs来源于大气的干湿沉降.海螺沟地区PFASs的年排放通量为0.2197t/a,其中排放通量最高的是PFOA (0.0762t/a),占总排放量的34.71%,然后依次为PFHpA (0.0317t/a)和PFBA (0.0285t/a),分别占总排放量的14.43%和12.96%.未来应对贡嘎海螺沟地区加强PFASs的监测,更加准确掌握海螺沟冰川融水排放的PFASs通量,为科学管控...  相似文献   

8.
成都饮食中全氟化合物的污染特征及健康风险评估   总被引:1,自引:0,他引:1  
为了解成都市居民通过饮食暴露于全氟化合物(Perfluoroalkyl Substances, PFASs)的情况,本研究通过调查统计成都市居民的主要饮食情况,选取米、蔬菜、牛奶、鸡蛋、鱼和猪肉6类饮食为研究对象,采用超高效液相色谱-串联质谱法对样品中17种PFASs进行检测.结果显示,所有饮食中均检出PFASs,说明PFASs在饮食中普遍存在.鸡蛋中的∑PFASs含量最高,达(155±25.4) ng·g~(-1)(湿重,下同);白菜的∑PFASs含量最低,仅为(0.101±0.026) ng·g~(-1).大部分样品中以全氟辛烷羧酸(Perfluroroocantanoic Acid,PFOA)为主,其次为短碳链的全氟羧酸(Perfluoroalkyl Acids,PFCAs).其中,鸡蛋蛋黄中∑PFASs的含量为(600.0±98.6) ng·g~(-1),远高于蛋清中的含量(0.606±0.101) ng·g~(-1),且蛋黄中主要为全氟辛烷磺酸(Perfluorooctane Sulfonate,PFOS)(98.1%).通过风险评估可以得出,成都市居民对PFOS和PFOA的日摄入量分为85.6 ng·kg~(-1)·d~(-1)和4.38 ng·kg~(-1)·d~(-1),低于欧盟食品安全局推荐的每日最大摄入量,不会对成都市居民造成即时伤害.  相似文献   

9.
成都市道路积尘中全氟化合物的污染特征及暴露风险评估   总被引:3,自引:3,他引:0  
方淑红  朱和祥  叶芝祥  印红玲  孙静 《环境科学》2019,40(12):5265-5271
为了解成都市道路积尘中全氟化合物(PFASs)的污染特征及人群暴露风险,采用超高效液相色谱-质谱联用仪分析了成都市道路积尘中12种PFASs的含量水平.成都市道路积尘中PFASs的含量为0. 95~111 ng·g~(-1),平均含量为(25. 6±37. 2)ng·g~(-1),说明存在较大的空间差异性.主干道路上PFASs的总含量显著高于支干道路,支干道路市区含量高于郊区含量.解放路一段、金牛坝路及水碾河路段主要的全氟化合物为全氟丁烷羧酸(PFBA),比例高达95%.而其它道路中主要的PFASs为全氟辛烷羧酸(PFOA,24. 8%)和全氟辛烷磺酸(PFOS,24. 1%),说明不同区域PFASs的污染源存在较大差异.成都市儿童和成人通过道路积尘摄入的PFASs分别为0. 168 ng·(kg·d)-1和0. 028 ng·(kg·d)-1,说明儿童暴露风险高于成人,应加强对儿童健康风险的关注.另外,根据欧盟推荐的每日最大耐受量,道路积尘中PFOS和PFOA的暴露量不会对成都市居民造成即时伤害.  相似文献   

10.
为探究全氟和多氟烷基化合物(PFASs)及典型异构体在人血清中的暴露特征,利用高效液相色谱串联质谱法(HPLC-MS/MS)分析检测了60个人类血清样本中包括全氟辛烷羧酸(PFOA)与全氟辛烷磺酸(PFOS)异构体在内的16种PFASs.结果表明,除PFOA的异构体4m-PFOA与5m-PFOA外,所有目标PFASs均被检出.ΣPFASs的血清浓度为2.15~77.22 ng·mL-1,n-PFOS是血清中贡献率最高的PFASs,其次为3+5mPFOS、4m-PFOS、n-PFOA及全氟己烷磺酸(PFHxS),PFOS所有的异构体与PFHxS、PFNA之间均存在显著的正相关关系.探究不同性别和年龄段的人类血清的PFASs发现,男性血清中的PFASs浓度显著高于女性,高年龄段人群血清中的PFASs浓度高于低年龄段人群.健康风险表征显示,血清中所有的PFASs单体的风险熵值HQ均小于1,PFASs的总和危险指数HI也小于1,血清中的现有浓度的PFASs对造成人类肝毒性和生殖毒性的风险程度较低,肝毒性与生殖毒性HI的主要贡献者均为n-PFOS,其次为3+5m-PFOS与...  相似文献   

11.
本研究以全氟化合物(perfluoroalkyl substances,PFASs)为研究对象,选择人类活动强度大的中、韩滨海城市化地区为研究区域,采集了126份水体及125份沉积物样品,通过固相萃取和高效液相色谱-串联质谱(HPLC/MS-MS)的方法,分析了水体及沉积物中的15种PFASs.结果表明,PFASs在水体和沉积物中全部检出,水体中PFASs总质量浓度范围为6.75~20982 ng·L-1,沉积物中PFASs含量(以干重计)范围为0.229~53.8 ng·g-1.区域对比发现,中国滨海城市化地区水体和沉积物中PFASs含量相对较高以长链PFOA为主,而韩国水体中则以短链PFBA和PFPeA为主,沉积物中以PFOS、PFBA和PFOA为主.PFASs在水体和沉积物中的分配系数与沉积物中有机碳的含量、PFASs碳链长度有密切关联,15种化合物中有9种化合物的分配系数与有机碳含量存在显著相关性(r>0.21,P<0.05),随着碳链长度的增加分配系数也平稳增加.生态风险分析结果表明,中、韩滨海城市化地区水体和沉积物中PFASs含量整体较低,尚处于较低风险水平,但存在严重局部污染问题,应当重视其对人体造成的潜在健康风险.  相似文献   

12.
陈虹  韩建波  张灿  程嘉熠 《环境科学》2019,40(5):2115-2121
本文对大连海域入海河流和入海排污口中19种PFASs和2种PFOS新型替代品Cl-PFESAs进行了分析,估算其入海通量,并分析了季节变化特征.结果表明,研究区域入海河流中总PFASs的含量范围为9. 85~757 ng·L~(-1)(浓度中位数为74. 7 ng·L~(-1)),与国内外其他河流相比,大连海域入海河流中总PFASs的含量处于中等或较低水平;入海排污口中总PFASs的含量范围为9. 19~801 ng·L~(-1)(浓度中位数为29. 5 ng·L~(-1)).入海河流和入海排污口中PFASs的主要贡献要素为PFOS和PFOA,其中入海河流、市政污水和污水处理厂出水中总PFASs含量未发现明显的季节差异特征,但工业废水中冬季含量显著高于夏季.计算结果显示,大连海域总PFASs入海通量约123 g·d~(-1)(44. 7 kg·a~(-1)),入海河流和入海排污口的贡献相当.全氟/多氟醚类磺酸化合物(Cl-PFESAs)检出率较低,其中8∶2Cl-PFESA均为检出.  相似文献   

13.
全氟化合物(polyfluoroalkyl substances,PFASs)在长期生产和使用过程中会通过多介质扩散和远距离迁移等方式进入环境中.本研究分析了乌梁素海流域丰水期及枯水期采集的地表水样品中17种PFASs,探讨了该地区PFASs 的时空分布特征、潜在来源及生态风险.结果表明,PFASs在所有地表水样品中均...  相似文献   

14.
钟婷婷  林涛  刘威 《环境科学》2023,44(5):2613-2621
全氟和多氟烷基物质(PFASs)存在于地表水、自来水甚至商业饮用水中,对人类健康构成威胁.在以太湖为源头的某大型饮用水处理厂(DWTPs)中研究了14种PFASs的检出和转化.结果表明,共有10种PFASs在水样中被检测到,说明PFASs在饮用水中分布广泛.原水中的PFASs总浓度为127.4ng·L-1,其中最高浓度为全氟辛酸(PFOA, 49.8ng·L-1).预臭氧会导致PFASs的浓度反向升高,这可能是由于前体物的存在或由短链向长链进行转化导致.常规处理工艺无法有效去除PFASs, O3-BAC在DWTPs的处理过程中对PFASs的去除(20.74%)具有主导作用.O3-BAC作为DWTPs的主要去除工艺,其反冲洗水中含有浓度较高的PFASs,分布特征与原水相似.利用中试装置,对比了5种常见的滤池反冲洗水处理工艺,结果表明,GAC-超滤可以在保证浊度较高去除率(99.08%)的基础上,吸附并截留一定量的PFASs.从三维荧光分析可得,GAC-超滤也可去除大部分荧光微污染物,对于原水含有较高浓...  相似文献   

15.
The levels of six perfluoroalkyl substances(PFASs) in surface sediment and their vertical variations in dated sediment cores from the Haihe River were investigated; studied substances included perfluorooctanoic acid(PFOA),perfluorononanoic acid(PFNA),perfluorooctane sulfonate(PFOS),perfluorodecanoic acid(PFDA),perfluoroundecanoic acid(PFUnA),and perfluorododecanoic acid(PFDoA). Results showed that the total PFAS concentration in surface sediment ranged between 0.52 and 16.33 ng/g dry weight(dw) with an average of3.47 ng/g dw,with PFOS and PFOA as the dominant PFASs. In general,the PFAS concentrations in the mainstream increased from the upper to the lower reaches,except that a drop occurred downstream of the Erdao dam. Although the PFASs in the sediment cores did not show a clear decreasing or increasing trend with depth,the three cores had a similar vertical variation.The PFAS levels were relatively low in the surface sediment,and reached the first high point at8–20 cm as a result of the wide use of PFASs from 1990 to 2000. After that the PFAS levels decreased,and then increased to a second high point at about 40–48 cm,which might be caused by the leaching of PFASs in sediment. Because PFASs have hydrophilic groups and relatively high solubility,the PFASs will transfer from the upper to lower layers of sediment when water infiltration occurs,leading to the fluctuation of PFAS levels in sediment cores. This study suggests that both the temporal variation of sources and transfer processes of PFASs in sediments are important factors influencing the vertical variation of PFASs in sediment cores.  相似文献   

16.
李鹏飞  王媛  杨晨  史亚利  崔建升 《环境科学》2023,44(3):1593-1601
为探究石家庄市道路灰尘中全氟/多氟化合物(PFASs)的污染特征,利用高效液相色谱-串联质谱法(HPLC-MS/MS)分析主干和次干道路灰尘样品(部分采集于污水处理厂和消防站附近)中包括两类新型替代品在内的22种PFASs.结果表明,PFASs在石家庄道路灰尘中普遍存在,特别是新型替代品——六氟环氧丙烷二聚酸(HFPO-DA)的检出属国内首次.∑PFASs含量范围为2.62~137.65 ng·g-1,全氟辛酸(PFOA)为主要组分,其次为全氟丁酸(PFBA)、 HFPO-DA和全氟辛基磺酸(PFOS).空间分布上,西北方向PFASs含量水平最高,东南方向最低.污水处理厂和消防站附近道路灰尘中PFASs组成存在明显不同,特别是新型替代品的检出类型.健康风险评估结果显示,道路灰尘摄入对于人体暴露PFASs和其新型替代品的风险相对较低.经口、呼吸道和皮肤接触3种途径中,经口摄入是目标化合物进入人体的主要途径.在同一暴露途径下,儿童的暴露量高于成人.  相似文献   

17.
白薇扬  张成  唐振亚  赵铮  王定勇 《环境科学》2015,36(10):3649-3661
分别于2013年9月至2014年7月,在三峡库区长寿湖水库设置5个采样点,分季节、分层次对水样和沉积物间隙水进行了采集和分析,考察了水库水体和沉积物间隙水不同形态汞浓度及垂向分布特征,并研究了沉积物中汞向上覆水的扩散通量.结果表明,长寿湖水库水体总汞浓度平均值为(14.77±12.24)ng·L-1,总甲基汞浓度平均值为(0.41±0.47)ng·L-1.夏秋季采样点溶解态甲基汞浓度在表层下4~8 m出现峰值,随之其值降低近湖底部再次跃增.颗粒态甲基汞浓度峰值出现在表层下8~20 m而非在沉积物-水体界面处,主要与上层水体颗粒物吸附甲基汞的沉降有关.长寿湖水库垂直剖面间隙水甲基汞峰值出现在表层下16 cm和28 cm,可能硫酸盐还原细菌活动扩展到更深的区域,从而导致了沉积物深处甲基化率的提高.间隙水溶解态甲基汞在秋季和夏季向上覆水体扩散通量分别为28.2 ng·(m2·d)-1和30.0 ng·(m2·d)-1,远高于冬季3.8ng·(m2·d)-1,这与夏秋两季水温较高有关.夏季、春季水体DMe Hg浓度与DO相关关系(r=-0.482**,P0.05;r=-0.339*,P0.01),秋季和冬季不具有相关性.  相似文献   

18.
三门峡水库水体中不同形态汞的分布特征   总被引:2,自引:1,他引:1  
程柳  麻冰涓  周伟立  王力  职音  刘清伟  毛宇翔 《环境科学》2017,38(12):5032-5038
为了解三门峡水库水体中不同形态汞的分布特征,在丰水期和枯水期对三门峡水库进行采样,分别采用冷原子荧光光谱法(CVAFS)和蒸馏-乙基化衍生-气相色谱-冷原子荧光法(GC-CVAFS)测定水样中总汞、总甲基汞、溶解态总汞和溶解态甲基汞的浓度.结果表明,三门峡水库水体中总汞、溶解态汞和颗粒态汞浓度范围分别为1.65~9.65、0.80~3.16和0.70~7.81 ng·L~(-1),符合国家地表水环境质量标准(GB 3838-2002)一类水汞浓度标准限值;总甲基汞、溶解态甲基汞和颗粒态甲基汞浓度分别为0.05~0.36、0.02~0.14和ND~0.26 ng·L~(-1).三门峡水库水体总汞和甲基汞在季节和空间分布上没有呈现出明显的变化规律.总汞和甲基汞与未受污染的天然水体差别不大,水库未受到明显的汞污染.丰、枯水期沉积物中总汞浓度分别为(92.96±10.65)ng·g~(-1)和(80.06±19.14)ng·g~(-1),甲基汞浓度分别为(0.33±0.14)ng·g~(-1)和(0.50±0.19)ng·g~(-1).较低的甲基汞浓度说明在三门峡水库汞的迁移转化过程中,甲基化作用可能并非主要的过程,这可能与水体底层溶解氧浓度较高以及沉积物中有机质浓度较低有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号