首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
贾佳  丛怡  高清敏  王玲玲  杨静静  张国辉 《环境科学》2020,41(12):5256-5266
为揭示郑州市冬季空气污染过程及形成原因,选取郑纺机国控站点为采样点,探讨2019年12月郑州大气污染物浓度和主要气象参数特征,对比不同污染阶段PM2.5水溶性离子、元素和碳质组分浓度变化,并利用空气质量模型模拟结果,分析采样期间污染源排放与区域传输对采样点PM2.5质量浓度的贡献.结果表明,采样期间第一次和第二次重污染形成和消散过程略有差异,分别呈现出"缓慢累积、缓慢清除"和"缓慢积累、快速清除"的特征.第一次和第二次重污染时段NO3-、SO42-和NH4+质量浓度占PM2.5比值达到41.5%和46.2%,OC/EC比值分别为4.0和4.5,二次气溶胶颗粒的大量生成是两次重污染形成的主要原因.采样期间本地、东部、南部、西部和北部区域对采样点PM2.5浓度贡献占比均值分别为58.0%、2.4%、6.7%、6.9%和12.7%,第一次重污染是本地污染物排放和外来源区域传输共同作用的结果,期间西部和南部区域及外来工业源贡献占比有所升高;而第二次重污染则主要受到本地大气污染物累积的影响,期间交通源、扬尘源和燃煤源污染贡献骤增,外部区域对采样点PM2.5浓度的影响有所减弱.  相似文献   

2.
利用耦合了污染源在线追踪模块的化学传输模式NAQPMS (Nested Air Quality Prediction Model System),结合地面细颗粒物(PM2.5)的小时观测数据,模拟了2014年1、4、7、10月4个月份武汉地区PM2.5浓度时空分布特征,量化了本地、武汉城市圈及远距离地区对武汉PM2.5浓度贡献.研究发现,2014年武汉市PM2.5年均浓度为85.3 μg·m-3,污染天(PM2.5日均值≥75 μg·m-3)占全年总天数的47.9%.细颗粒物的月均值呈现出季节性特征,即冬季污染最为严峻,1月均值为199.1 μg·m-3,PM2.5浓度超标持续一整月;夏季空气质量最好,春秋介于两者之间.模拟的PM2.5平均浓度在空间上大致呈现"城区高,郊区低"的分布态势.污染物区域来源解析发现,武汉市本地排放源贡献在1月最低,为34.1%,表明外来源贡献对长期灰霾的形成起决定性作用.7月本地源影响最显著(65.7%),和毗邻城市源(23.1%)一起成为夏季污染物的主要来源.4月和10月本地排放贡献比分别为49.1%和42.1%.4个月份,武汉城市圈对该市PM2.5浓度的贡献差异不大,范围在20.8%~24.1%.受大尺度天气系统的影响,远距离传输贡献率趋势与本地来源相反,占10.6%~35.3%.研究结果表明污染气团跨界输送对武汉不同季节PM2.5浓度有重要贡献.在冬季大范围污染背景下,污染物区域大范围协同控制才能有效减缓武汉PM2.5污染问题;而夏季对本地及近周边城市的减排措施可以有效改善武汉的空气质量.  相似文献   

3.
基于CAMx的徐州市2016年冬季PM2.5污染过程及来源分析   总被引:1,自引:0,他引:1  
徐州地处江苏西北部、华北平原的东南部,为内陆资源型工业城市,近几年来环境监测数据显示,徐州地区大气复合污染问题日益突出,准确模拟大气污染物状况及来源对于空气污染的防治十分关键.2016年1月,徐州市出现了多次持续的重污染天气,研究中以此次污染事件为例,首先基于WRF-CAMx空气质量模型系统对这次细颗粒物污染过程进行全面的模拟与分析,其次利用CAMx-PSAT系统模拟和分析本次污染的区域传输过程.研究结果显示:此次细颗粒物污染中,PM2.5组成成分以硫酸盐、元素碳、硝酸盐和铵盐为主,分别占月平均浓度的29%、15%、14%、14%;PM2.5的区域传输贡献中,长距离传输所占比重最大,月平均贡献率达46%,其次为本地源排放,平均贡献率为39%;重污染天气期间,PM2.5污染主要从西北方向输入,此时长距离传输的影响明显增大.  相似文献   

4.
大气PM2.5是当前我国城市和区域面临的最突出的大气污染问题,然而PM2.5及其关键组分污染的来源不清,严重制约了人们对PM2.5 的科学认知和污染防控的步伐.本研究以2013年1月中国东部地区一次典型重污染过程为研究案例,利用CAMx三维模型中耦合了物种示踪机制的颗粒物来源追踪方法,探讨和揭示了中国东部地区代表性城市上海及周边地区共4个源区(上海、苏南、浙北、大区域)、8类污染源(包括燃烧源、生产工艺过程、流动源、生活面源、挥发源、扬尘源、农业源、天然源)对上海城区大气中PM2.5及其关键组分包括水溶性无机离子(SO2-4、NO-3、NH+4)、元素碳(EC)和有机碳(OC)的污染贡献.研究结果表明,2013年1月份中国东部出现严重灰霾污染期间,上海城区PM2.5的主要区域贡献为上海本地污染源排放累积(PM2.5浓度贡献平均为55.4%±22.3%)和长距离输送(38.4%±20.0%).上海地区8类主要排放源中,扬尘源贡献均值最大,达到30.7%±31.8%,其次为燃烧源18.2%±15.6%、流动源18.6%±17.5%、挥发类源16.9%±18.0%.对上海市PM2.5组分的源解析研究发现,燃烧源对细颗粒物中硫酸盐和硝酸盐的浓度贡献最大,其浓度贡献分别达到56.2%和55.9%.铵盐中72.4%来源于挥发类源贡献,元素碳约78.3%来自于交通源贡献.挥发类源排放和流动源是主要的有机气溶胶贡献源,浓度贡献分别为36.2%和32.5%.  相似文献   

5.
京津冀及周边地区秋冬季大气污染物排放变化因素解析   总被引:4,自引:4,他引:0  
唐倩  郑博  薛文博  张强  雷宇  贺克斌 《环境科学》2021,42(4):1591-1599
基于大气污染源排放清单技术方法,定量分析2016~2017年秋冬季"跨年霾"至2019~2020年秋冬季"疫情霾"期间京津冀及周边地区主要大气污染物排放量变化,解析大气污染防治政策实施带来的减排和疫情造成的活动水平下降对主要污染物排放的贡献,并利用空气质量模型模拟分析不利气象条件下措施减排和疫情影响对空气质量改善的贡献.结果表明,从"跨年霾"(2016-12-16~2017-01-14)至"疫情霾"(2020-01-22~2020-02-14)该区域主要大气污染物排放量大幅下降50%左右,不利气象条件下,区域PM2.5平均浓度可削减40%以上.措施减排主要来自火电、钢铁等重点工业行业提标改造和工业锅炉、民用燃煤等燃煤源治理,对SO2和PM2.5排放量的削减贡献较大,贡献率分别为67.1%和53.4%;疫情主要影响移动源和轻工业活动水平,对NOx和VOCs排放量的削减贡献较大,贡献率分别为71.9%和68.2%.措施减排对区域空气质量改善贡献突出,有效抑制了重污染过程的强度和范围.在"跨年霾"的不利气象条件下,措施减排使区域PM2.5平均浓度下降26%,重度及以上污染天数减少44%.受疫情影响,区域PM2.5平均浓度继续下降24%,重污染持续时间和范围进一步缩减.  相似文献   

6.
随着城市化和工业化水平的逐渐提高,河南省的空气污染问题也日益严重.利用嵌套网格空气质量模式(NAQPMS),数值模拟了2013年7月-2014年6月年河南省大气细颗粒物及其前体物(NO2、SO2、PM10、PM2.5)的地面浓度,并量化了其主要来源.结果表明:模式能够较好地再现污染物的时空演化特征.整体来讲,河南省PM2.5的高值区集中在中部和北部地区,呈现冬季高、夏季低的特点.在线源解析模拟发现,河南省不同地区PM2.5的来源有所不同,中西部地区主要来自于本地,而在东部和北部地市,来自周边省份的区域输送更为显著,其贡献达到40%~50%,且在PM2.5浓度的高值区更为明显.就行业贡献而言,居民源、工业源和机动车排放是河南省PM2.5浓度的主要来源,其浓度贡献分别为23.7 μg·m-3(贡献比例24%,下同)、20.6 μg·m-3(21%)和21.3 μg·m-3(22%),电厂、农牧业和地面扬尘的浓度贡献分别为7.0 μg·m-3(7%)、8.7 μg·m-3(9%)和17.8 μg·m-3(18%).受居民源影响最大的地区是河南中东部和北部地市,其贡献达到PM2.5浓度的27%、27%和25%.工业源影响最大的地区集中在太行山南部地市,其浓度贡献为26.4 μg·m-3(24%),在其他地市的贡献为17%~23%.机动车对河南东部影响最为显著,其浓度贡献为22.9 μg·m-3(24%).电厂和农畜牧业对全省PM2.5的贡献分布比较均匀,分别为6%~9%和8%~10%.分析不同浓度下的PM2.5来源,发现工业源和扬尘贡献随PM2.5浓度增加逐渐降低,而居民源和机动车排放的贡献则有所增加,在PM2.5浓度高于100 μg·m-3期间,达到22%和20%.  相似文献   

7.
2013年12月上海市PM2.5重污染过程数值模拟研究   总被引:1,自引:0,他引:1  
基于2013年11月30日-12月13日上海一次PM2.5重污染过程,利用Model-3/CMAQ模式及过程分析技术,定量评估不同时段各大气过程对上海PM2.5浓度变化的影响.结果表明:Model-3/CMAQ模式系统能较好的模拟出实况PM2.5的浓度变化趋势与特点.研究期间,白天源排放的增强和大气传输的影响、加上较强的气溶胶和云过程生成贡献,是造成上海PM2.5浓度上升至重污染的主要原因.不同污染时段对PM2.5浓度上升贡献率最大的过程均为输送,其中,西北部点位(青浦淀山湖和虹口凉城输送)的贡献率最大,且重污染时段输送的贡献率明显高于非重污染时段.  相似文献   

8.
谢瑞加  侯红霞  陈永山 《环境科学》2018,39(4):1484-1492
烟花爆竹燃放是大气细颗粒物(PM2.5)来源的途径之一.以泉州城区春节期间为例,研究烟花爆竹燃放对大气细颗粒物的影响,服务大气污染的特殊污染源管理.结果表明,烟花爆竹集中燃放时段,SO2、PM10和PM2.5浓度明显升高,尤以PM2.5的升高最为显著,城区PM2.5日均浓度峰值约为年均值的4倍,涂山街点位PM2.5小时浓度峰值约为城区年均值的21倍;燃放高峰期Al、Mg、Ba、Cu、Sr等烟花爆竹的特征元素占比迅速上升,Al+、Mg+、Ba+、Cu+间的小时数浓度高度相关;监测期间泉州城区细颗粒物主要污染源是烟花爆竹燃放和生物质燃烧,贡献占总颗粒物的一半以上,燃煤和工业工艺源的比例相对较低,均低于10.0%;集中燃放时段大气细颗粒物浓度高达0.578 mg·m-3,此时的烟花源的贡献比例也提升到58.2%;污染过程分析表明PM2.5浓度与烟花源的占比、数浓度的变化趋势具有趋同性.以上结果说明烟花爆竹的集中燃放是春节期间泉州大气环境恶化的主要原因.  相似文献   

9.
2014年APEC期间北京市空气质量改善分析   总被引:11,自引:5,他引:6  
利用2014年11月1~12日(APEC会议期间)北京市大气污染物、PM2.5组分及气象、遥感监测数据,结合CMB受体模型,综合分析了APEC会议期间北京市空气质量与气象条件变化并初步评估了减排措施对APEC会议期间PM2.5浓度的贡献及影响. 结果表明,APEC会议期间北京市PM2.5、PM10、SO2、NO2的浓度分别为43、62、8和46 μg ·m-3,比近5年平均浓度(PM2.5为2012~2013年平均浓度)降低45%、43%、64%和31%; 空间分布上PM2.5在城区及北部山区改善效果最明显,下降幅度在30%~45%之间,南部地区降幅在25%以下; 不同类别的站点降幅在27.4%~35.5%之间; APEC会议期间PM2.5的主要组分SO42-与同期(2013年11月1~12日)相比下降50%,地壳物质同比下降76%,NO3-同比下降35%; CMB模型源解析结果显示APEC会议期间燃煤锅炉贡献2%左右,扬尘贡献7%左右,机动车贡献30%左右; APEC会议期间北京市及周边地区针对可能发生的污染过程采取的减排保障措施对PM2.5浓度具有明显的削峰降速作用.  相似文献   

10.
为了探明昆山市不同污染条件下PM2.5中水溶性无机离子的污染特征以及本地源排放占主导时对污染过程的贡献,本研究使用昆山市2017年3月—2018年2月期间PM2.5、水溶性无机离子及其气态前体物数据,分别探讨了水溶性无机离子及其气态前体物在污染天气和清洁天气情况下的变化特征,揭示了它们在污染天气和清洁天气下的变化机制.同时结合周围城市PM2.5浓度筛选出昆山市秋、冬季局地污染事件,利用主成分分析(principle component analysis,PCA)方法对筛选出的局地污染事件中的水溶性无机离子数据进行了来源解析,定量评估了本地源排放占主导时不同水溶性无机离子对灰霾污染事件过程中PM2.5浓度的贡献.结果表明:①SO42-、NO3-、NH4+(合称SNA)是PM2.5的重要组分,且其相对贡献随着大气污染加重而变化.3种离子在清洁和污染条件下对PM2.5的相对贡献分别是49.4%~62.3%和52.7%~65.9%.在3种主要的水溶性无机离子中,NO3-浓度最高,其次是SO42-和NH4+.随着污染加重,SO42-的贡献率下降,而NO3-的贡献率上升.②污染天气下3种离子日变化规律不同,且存在明显季节差异.其中秋冬季SO42-和NH4+与各自气态前体物变化趋势一致且为单峰型;NO3-为单峰型而其前体物则为双峰型.另外,NO3-与NH4+日变化趋势较为一致,表明昆山地区SNA多以NH4NO3形式存在.③2017—2018年秋冬季由本地源排放占主导的污染天气下,PM2.5的主要来源是二次气粒转化、建筑扬尘、生物质燃烧和燃煤;除了Mg2+和Ca2+,其他水溶性离子浓度均低于非本地源排放占主导的污染天气下的浓度.  相似文献   

11.
紫外光照下盐酸环丙沙星的光解性能   总被引:1,自引:0,他引:1  
本研究重点考察了盐酸环丙沙星初始浓度、硝酸铅、硝酸镉、氯化铅、氯化镉等重金属盐对盐酸环丙沙星光降解性能影响.结果表明,黑暗条件下环丙沙星无降解;紫外光照可以有效去除环丙沙星,且环丙沙星的光降解速率随其初始浓度的增大而降低;硝酸铅和硝酸镉(除0.006 mmol·L~(-1)体系外)可以促进环丙沙星的光降解,且随摩尔比的增大(即硝酸盐浓度的降低),环丙沙星的半衰期逐渐增大;随着摩尔比的增大(即氯化盐浓度的降低),氯化铅和氯化镉先促进后抑制环丙沙星的光降解.  相似文献   

12.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

13.
重庆市北碚城区大气污染物浓度变化特征观测研究   总被引:21,自引:6,他引:15  
为了研究重庆市北碚区大气污染物浓度变化特征及其污染状况,采用全自动在线监测仪器对重庆市北碚城区大气污染物进行连续在线监测,分析了2012年1月~2013年2月的大气污染物观测数据.结果表明,除SO2以外,其它污染物均有超出国家新环境空气质量标准(GB 3095-2012)的情况出现,其中细粒子污染最严重.大气污染物浓度具有明显的季节变化,2012年春夏秋冬季各污染物平均浓度:O3为(36.1±19.2)、(48.8±32.6)、(29.8±28.6)、(18.2±15.8)μg·m-3,Ox为(77.6±20.6)、(91.3±37.6)、(77.5±30.6)、(69.4±18.2)μg·m-3,表现为夏高冬低;NO为(11.8±9.4)、(8.2±4.9)、(20.7±17.1)、(30.4±25.1)μg·m-3,NO2为(42.3±13.1)、(40.5±9.9)、(47.2±14.1)、(51.2±15.9)μg·m-3,NOx为(54.1±20.8)、(48.7±12.6)、(67.9±25.5)、(81.6±37.9)μg·m-3,均表现为冬高夏低;SO2为(50.5±23.3)、(26.3±16.7)、(38.8±18.4)、(53.7±23.4)μg·m-3,表现为冬春高而夏秋低;而PM2.5则为(61.4±28.5)、(68.1±32.5)、(61.9±27.1)、(89.6±44.2)μg·m-3,表现出冬季高而其它季节比较平稳的特征.O3、Ox、NO、NOx以及SO2浓度均为单峰型的日变化形式,其中O3和Ox的日变化峰值出现在午后16:00,而NO、NOx及SO2的日最大值则出现在08:00~11:00;NO2和PM2.5的日变化模态呈双峰型,有早晚两个峰值.O3和Ox在夏季日变化振幅最大,而其它污染物则冬季日变化振幅最大.将工作日与周末各污染物浓度的日变化相比,成对t检验分析表明,NO并无明显差异(P=0.14),但N2O工作日显著高于周末(P=0.03),而O3则为工作日极显著低于周末(P<0.001).相关分析表明,O3浓度与气温和风速呈显著或极显著正相关,与相对湿度呈极显著负相关,而NOx则与以上各气象要素的关系正好相反;PM2.5与气温和风速呈负相关,与相对湿度呈正相关;SO2与各气象要素的关系在不同的季节表现不同.除此之外,风向也是影响大气污染物浓度的一个重要因素.  相似文献   

14.
不同环境因素下太湖中四环素的自然消减   总被引:2,自引:1,他引:1  
四环素已经广泛应用于兽药生产和疾病治疗中,并通过禽畜粪便等途径进入环境中,基于四环素残留物的危害性,采用了模拟自然环境状态的实验方法,研究了四环素在不同环境状态(光照、底泥、重金属)下的自然消减过程.结果表明,四环素在自然光照下的消减不明显;未杀菌底泥水体中,四环素的消减速率大于杀菌底泥水体;实验初期,含硝酸铅水体中四环素消减缓慢,随着时间延长,消减速率加快,而在硝酸镉水体中四环素短时间内消减趋势已经十分明显,且消减速率大于硝酸铅水体;以0.08 mmol·L-1四环素为例,四环素在光照下各环境因素中的消减速率依次为:未杀菌底泥(87.2%)>杀菌底泥(70.37%)>硝酸镉水体(64.2%)>硝酸铅水体(32.3%)>空白组(6.6%),各环境因素均促进了四环素的消减.避光时,各环境因素中四环素的消减趋势与光照组相同,但消减速率较光照组小,表明光照对四环素的自然消减具有一定的促进作用.  相似文献   

15.
2017年汾渭平原东部大气颗粒物污染特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
高度集中的煤炭产业和繁忙的交通运输使得汾渭平原成为全国污染最严重的地区之一.利用中国环境监测总站发布的大气环境监测资料,以统计的方法分析了2017年汾渭平原东部三门峡市、运城市、渭南市、洛阳市的颗粒物质量浓度演变特征,并与北京市开展对比分析.结果表明:①2017年汾渭平原东部颗粒物污染形势较为严峻,ρ(PM2.5)年均值范围为61~75 μg/m3,高于北京市(58 μg/m3),ρ(PM2.5)/ρ(PM10)范围为0.47~0.57,远低于北京市的0.66,说明汾渭平原东部一次颗粒物的贡献更为显著.②与北京市相比,汾渭平原东部重污染有效时数较长,在三门峡市、运城市、渭南市和洛阳市出现PM2.5重度及以上污染过程的时数分别占全年总时数的6.56%、8.91%、9.23%和9.10%.但由于汾渭平原东部重污染期间颗粒物质量浓度较北京市低,因此造成汾渭平原东部和北京市重度及以上污染过程中颗粒物质量浓度平均值在颗粒物质量浓度年均值中占比基本相同.③汾渭平原东部颗粒物质量浓度的周变化特征与北京市有显著区别.④重污染期间,汾渭平原东部ρ(PM2.5)和ρ(PM10)的日变化特征与ρ(SO2)相同,均呈白天高、夜间低的特征,而北京市ρ(PM2.5)和ρ(PM10)的日变化特征与ρ(SO2)相反,呈白天低、夜间高的特征,说明汾渭平原东部特殊的能源结构、边界层动力演变和局地环流造成高架点源对重污染期间污染物质量浓度的影响较显著.研究显示,汾渭平原东部应该加强重污染期间高架点源的管控.   相似文献   

16.
浮游植物最大光合作用效率(F_v/F_m)可以判断水生生态环境状况,是探究梯级筑坝对河流生态环境影响的重要参数。本研究对三岔河梯级水库的浮游植物F_v/F_m及相关的水化学参数进行了季节性调查,探讨F_v/F_m的时空变化及其环境影响因素。结果表明,F_v/F_m具有明显的时空差异性,在空间分布上为库区下泄水河流;F_v/F_m和浮游植物总细胞丰度呈现显著正相关,库区总细胞丰度大,F_v/F_m比其它区域高。在时间分布上为冬季夏季≈秋季春季,表明浮游植物在水温较低时,会提高光合作用效率,F_v/F_m增高。  相似文献   

17.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

18.
杀菌剂对湖泊水体温室气体浓度分析的影响   总被引:5,自引:3,他引:2  
通过往湖泊水样中添加杀菌剂(CuSO4和HgCl2),利用平衡法,用气相色谱仪测定CO2、CH4、N2O浓度,研究杀菌剂(CuSO4和HgCl2)添加对湖泊水体CO2、CH4、N2O浓度分析的影响.实验设计:对照组(CK)不加任何试剂;处理组T1加1mL CuSO4溶液,T2加5 mL CuSO4溶液,T3加0.5 mL HgCl2溶液;每组的水样分两批分析:(Ⅰ)预处理完成后立即分析和(Ⅱ)预处理完成后静置两天再分析.结果表明,CuSO4和HgCl2的添加均能明显增加水体中CO2的浓度,CK(Ⅰ)和CK(Ⅱ)的CO2平均浓度分别为(11.5±1.47)μmol·L-1和(14.38±1.59)μmol·L-1,T1(Ⅰ)和T1(Ⅱ)的CO2平均浓度分别为(376±70)μmol·L-1和(448±246.83)μmol·L-1;T2(Ⅰ)和T2(Ⅱ)的CO2平均浓度分别为(885±51.53)μmol·L-1和(988.83±101.96)μmol·L-1;T3(Ⅰ)和T3(Ⅱ)的CO2平均浓度分别为(287.19±30.01)μmol·L-1和(331.33±22.06)μmol·L-1.但CuSO4和HgCl2添加对水体中CH4和N2O的浓度没有影响.对比Ⅰ和Ⅱ的实验结果可知,在水样预处理完成后需当天分析其温室气体(CO2、CH4、N2O)浓度.本研究表明,杀菌剂的添加能显著增加水体CO2的浓度.  相似文献   

19.
闽江口养殖塘水-大气界面温室气体通量日进程特征   总被引:4,自引:3,他引:1  
杨平  仝川  何清华  黄佳芳 《环境科学》2012,33(12):4194-4204
湿地围垦养殖是人类对于滨海湿地的主要干扰方式之一.以闽江口鳝鱼滩湿地围垦养虾塘和鱼虾混养塘为研究对象,利用悬浮箱-气相色谱法对养殖塘秋季水-大气界面CO2、CH4和N2O通量日进程进行了观测并同步测定了地面气象及表层水的物理、生物和化学指标.养虾塘和鱼虾混养塘水-大气界面CO2、CH4和N2O通量均具有明显的日变化特征,2种养殖塘整体上均表现为吸收CO2的汇,CO2通量平均值分别为-48.79 mg·(m2·h)-1和-105.25 mg·(m2·h)-1,排放CH4的源,CH4通量平均值分别为1.00 mg.(m2.h)-1和5.74 mg·(m2·h)-1,鱼虾混养塘水-大气界面CH4排放量和CO2吸收量均高于养虾塘.养殖塘水-大气界面温室气体通量受到诸多环境因子的影响,多元逐步回归分析结果表明,对于养虾塘,叶绿素a是影响其水-大气界面CO2通量日变化的主要环境因子,PO34-和SO24-是影响水-大气界面CH4通量日变化的主要环境要素;鱼虾混养塘水-大气界面CO2通量主要受到水温、叶绿素a的影响,而溶解氧、PO34-和pH是影响其CH4通量的主要环境因子。  相似文献   

20.
污灌区盐分累积对土壤汞吸附行为影响的模拟研究   总被引:2,自引:0,他引:2  
郑顺安  李晓华  徐志宇 《环境科学》2014,35(5):1939-1945
以受盐渍化和重金属汞双重胁迫的天津污灌区土壤为研究对象,探讨汞在盐渍化土壤中吸附的热力学及动力学特征.研究的盐分种类为污灌区土壤盐渍化进程中的主要盐分NaCl和Na2SO4,设置的盐度梯度为7个,添加质量分数为0~5%.结果表明,Lanmguir方程和Elovich方程可以理想地拟合盐处理下土壤对Hg(Ⅱ)吸附的热力学和动力学过程.当加入的盐分为NaCl时,随着添加盐度的增长(0~5%),最大吸附量(Langmuir方程的参数qm)、吸附强度(Langmuir方程的参数k)迅速降低,分别由对照的868.64 mg·kg-1和1.32减少至添加5%NaCl的357.48 mg·kg-1和0.63,且使土壤Hg(Ⅱ)的吸附速率(Elovich方程的参数b)显著下降;当加入的盐分为Na2SO4时,随着盐度的增长,最大吸附量和吸附强度小幅下降,由对照降低至添加5%Na2SO4的739.44 mg·kg-1和1.18,对土壤Hg(Ⅱ)吸附速率影响不显著.土壤中Cl-和SO2-4含量对Hg(Ⅱ)最大吸附量之间可以用对数模型刻画,Cl-含量与Hg(Ⅱ)吸附速率之间表现为线性关系.研究表明,高浓度的NaCl环境极其不利于Hg(Ⅱ)在污灌区土壤中的吸附及固持,用含NaCl较高的污水灌溉作物很有可能会引起汞的二次污染,土壤的盐渍化趋势会使汞污染和释放趋势更趋严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号