首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
(137)Cs is an artificial radionuclide with a half-life of 30.12 years which released into the environment as a result of atmospheric testing of thermo-nuclear weapons primarily during the period of 1950s-1970s with the maximum rate of (137)Cs fallout from atmosphere in 1963. (137)Cs fallout is strongly and rapidly adsorbed by fine particles in the surface horizons of the soil, when it falls down on the ground mostly with precipitation. Its subsequent redistribution is associated with movements of the soil or sediment particles. The (137)Cs nuclide tracing technique has been used for assessment of soil losses for both undisturbed and cultivated soils. For undisturbed soils, a simple profile-shape model was developed in 1990 to describe the (137)Cs depth distribution in profile, where the maximum (137)Cs occurs in the surface horizon and it exponentially decreases with depth. The model implied that the total (137)Cs fallout amount deposited on the earth surface in 1963 and the (137)Cs profile shape has not changed with time. The model has been widely used for assessment of soil losses on undisturbed land. However, temporal variations of (137)Cs depth distribution in undisturbed soils after its deposition on the ground due to downward transport processes are not considered in the previous simple profile-shape model. Thus, the soil losses are overestimated by the model. On the base of the erosion assessment model developed by Walling, D.E., He, Q. [1999. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality 28, 611-622], we discuss the (137)Cs transport process in the eroded soil profile and make some simplification to the model, develop a method to estimate the soil erosion rate more expediently. To compare the soil erosion rates calculated by the simple profile-shape model and the simple transport model, the soil losses related to different (137)Cs loss proportions of the reference inventory at the Kaixian site of the Three Gorge Region, China are estimated by the two models. The over-estimation of the soil loss by using the previous simple profile-shape model obviously increases with the time period from the sampling year to the year of 1963 and (137)Cs loss proportion of the reference inventory. As to 20-80% of (137)Cs loss proportions of the reference inventory at the Kaixian site in 2004, the annual soil loss depths estimated by the new simplified transport process model are only 57.90-56.24% of the values estimated by the previous model.  相似文献   

2.
The aim of the present study was to establish a reference site and its soil characteristics for use of fallout radionuclides in erosion studies in Slovenia. Prior to this study, no reference site and baseline data existed for Slovenia for this purpose. In the agricultural area of Gori?ko in East Slovenia, an undisturbed forest situated in Šalamenci (46°44’N, 16°7’E), was selected to establish the inventory value of fallout 137Cs and to establish a baseline level of multi-elemental fingerprint (major, minor, trace elements including heavy metals) and naturally occurring radionuclides in soils. A total of 20 soil profiles were collected at four 10 cm depth increments for evaluation of baseline level of 137Cs inventory. An exponential distribution for 137Cs was found and the baseline level inventory was established at 7300 ± 2500 Bq m−2 with a coefficient of variation of 34%. Of this mean present-day inventory, approximately 45% is due to the Chernobyl contribution.The physical degradation of soils through erosion is linked with biochemical degradation. This study introduces an approach to establishment of the naturally occurring radionuclide and elemental fingerprints baseline levels at a reference site which can provide comparative data to those from neighbouring agricultural fields for assessment of soil redistribution magnitude using fallout radionuclides. In addition, this information will be used to determine the impact of soil erosion processes and agricultural practices on soil quality and redistribution within agricultural landscapes in Slovenia.  相似文献   

3.
After introducing geostatistics concept and its utility in environmental science and especially in Fallout Radionuclide (FRN) spatialisation, a case study for cesium-137 ((137)Cs) redistribution at the field scale using geostatistics is presented. On a Canadian agricultural field, geostatistics coupled with a Geographic Information System (GIS) was used to test three different techniques of interpolation [Ordinary Kriging (OK), Inverse Distance Weighting power one (IDW1) and two (IDW2)] to create a (137)Cs map and to establish a radioisotope budget. Following the optimization of variographic parameters, an experimental semivariogram was developed to determine the spatial dependence of (137)Cs. It was adjusted to a spherical isotropic model with a range of 30 m and a very small nugget effect. This (137)Cs semivariogram showed a good autocorrelation (R(2)=0.91) and was well structured ('nugget-to-sill' ratio of 4%). It also revealed that the sampling strategy was adequate to reveal the spatial correlation of (137)Cs. The spatial redistribution of (137)Cs was estimated by Ordinary Kriging and IDW to produce contour maps. A radioisotope budget was established for the 2.16 ha agricultural field under investigation. It was estimated that around 2 x 10(7)Bq of (137)Cs were missing (around 30% of the total initial fallout) and were exported by physical processes (runoff and erosion processes) from the area under investigation. The cross-validation analysis showed that in the case of spatially structured data, OK is a better interpolation method than IDW1 or IDW2 for the assessment of potential radioactive contamination and/or pollution.  相似文献   

4.
The 137Cs inventories in undisturbed soils were measured for 292 locations across the territory of Vietnam. The logarithmic inventory values were regressed against characteristics of sampling sites, such as geographical coordinates, annual rainfall and physico-chemical parameters of soil. The regression model containing latitude and annual rainfall as determinants could explain 76% of the variations in logarithmic inventory values across the territory. The model part was interpreted as the logarithmic 137Cs deposition density. At the 95% confidence level, 137Cs deposition density could be predicted by the model within +/- 7% relative uncertainty. The latitude mean 137Cs deposition density increases northward from 237 Bq m(-2) to 1097 Bq m(-2), while the corresponding values derived from the UNSCEAR (1969) global pattern are 300 Bq m(-2) and 600 Bq m(-2). High 137Cs inputs were found in high-rainfall areas in northern and central parts of the territory.  相似文献   

5.
通过137Cs示踪技术,并采用相关的土壤侵蚀定量模型,对红壤丘陵区江西丰城市坡面不同土地利用类型、方式以及不同地貌部位的土壤侵蚀进行了研究。结果表明:研究区137Cs的本底值为1 992.45±145.63 Bq/m2;试验区典型坡地不同地貌部位均存在着一定程度的土壤侵蚀,且侵蚀强度总的变化趋势为坡底部>坡中部>坡顶部;不同土地利用类型和方式下的坡面侵蚀强度亦呈现一定的分异现象,从大到小依次为耕作土坡面>退耕30年+退耕1年混合坡面>退耕30年坡面>荒坡。  相似文献   

6.
Erosion studies often use 137Cs from the global fallout (main period: 1953-1964) as a tracer in the soil. In many European countries, where 137Cs was deposited in considerable amounts also by the Chernobyl fallout in 1986, the global fallout fraction (GF-Cs) has to be separated from the Chernobyl fraction by means of the isotope 134Cs. In a few years, this will no longer be possible due to the short half-life of 134Cs (2 yr). Because GF-Cs in the soil can then no longer be determined, the potential of using 239 + 240Pu as a tracer is evaluated. This radionuclide originates in most European countries essentially only from the global fallout. The activities and spatial distributions of Pu and GF-Cs were compared in the soil of a steep field (inclination about 20%, area ca. 3 ha, main soil type Dystric Eutrochrept), sampled at 48 nodes of a 25 x 25 m2 grid. The reference values were determined at 12 points adjacent to the field. Their validity was assured by an inventory study of radiocaesium in a 70 ha area surrounding the field sampling 275 nodes of a 50 x 50 m2 grid. In the field studied, the activity concentrations of GF-Cs and Pu in the Ap horizon were not correlated (Spearman correlation coefficient R = 0.20, p > 0.05), and the activity balance of Pu differed from that of GF-Cs. Whereas no net loss of GF-Cs from the field was observed as compared to the reference site, Pu was more mobile with an average loss of ca. 11% per unit area. In addition, the spatial pattern of GF-Cs and Pu in the field differed significantly. The reason may be that due to their different associations with soil constituents, Pu and Cs represent different fractions of the soil, exhibiting different properties with respect to erosion/deposition processes. This indicates that both radionuclides or one of them may not be appropriate to quantity past erosion. When tracer losses are used to calibrate or verify erosion prediction models, systematic deviations may not only stem from model shortcomings but also from tracer technique.  相似文献   

7.
The spatial distribution and behaviour of the global fallout (137)Cs in the tropical, subtropical and equatorial soil-plant systems were investigated at several upland sites in Brazil selected according to their climate characteristics, and to the agricultural importance. To determine the (137)Cs deposition density, undisturbed soil profiles were taken from 23 environments situated between the latitudes of 02 degrees N and 30 degrees S. Sampling sites located along to the equator exhibited (137)Cs deposition densities with an average value of 219Bqm(-2). Extremely low deposition densities of 1.3Bqm(-2) were found in the Amazon region. In contrast, the southern part of Brazil, located between latitudes of 20 degrees S and 34 degrees S, exhibited considerably higher deposition densities ranging from 140Bqm(-2) to 1620Bqm(-2). To examine the (137)Cs soil-to-plant transfer in the Brazilian agricultural products, 29 mainly tropical plant species, and corresponding soil samples were collected at 43 sampling locations in nine federal states of Brazil. Values of the (137)Cs concentration factor plant/soil exhibited a large range from 0.020 (beans) to 6.2 (cassava). Samples of some plant species originated from different collecting areas showed different concentration factors. The (137)Cs content of some plants collected was not measurable due to a very low (137)Cs concentration level found in the upper layers of the incremental soils. Globally, the soil-to-plant transfer of (137)Cs can be described by a logarithmic normal distribution with a geometric mean of 0.3 and a geometric standard deviation of 3.9.  相似文献   

8.
Large-volume seawater samples were collected in the Sulu and South China Seas and their (137)Cs activities were determined by gamma-ray spectrometry using a low background type high-purity Ge detector. Vertical distributions of (137)Cs activity showed an exponential decrease in the South China Sea, whereas a subsurface maximum at 200m depth and monotonic decrease below 300m were observed in the Sulu Sea. A significant difference in intermediate water (137)Cs activities in the 500-2000m depth was observed between the Sulu and South China Seas, i.e., the (137)Cs activities in the Sulu Sea were remarkably higher than those in the South China Sea. The difference in the (137)Cs inventory below 500m was approximately 1200Bqm(-2) between the Sulu and South China Seas. The (137)Cs total inventory of 3200Bqm(-2) in the Sulu Sea was 5.7 times higher than that expected from global fallout. A possible mechanism controlling this extremely high (137)Cs total inventory may be inflows of the (137)Cs rich water masses through the Luzon Strait, lateral transport across the Mindoro Strait into the Sulu Sea, and then subduction into the deep layer in the basin.  相似文献   

9.
The aim of this work was to study possible binding of 137Cs to various organic components in the soil and fungi, by using various sequential extraction procedures. The retention and binding of 137Cs has been studied in two horizons Of/Oh and Ah/B of a Ukrainian forest soil. The exchangeable fractions 137Cs from soil (sum of H2O and 1 M NH4OAc fraction) were found to be 12% in the organic-rich layer (range 11-14%) and 23% in the organic-poor (range 20-29%). The hydrolysis with 10% H2SO4 resulted in an additional release of 30% of 137Cs from the organic-rich soil (range 30-35%) and 38% from the organic-poor soil horizon (range 27-53%). Extraction with 30% H2O2 released 11 and 15% of the 137Cs activity from organic-rich and organic-poor soil horizons. The corresponding values for treatment with 98.8% NaOCl were about 27% in both types of soil. About 11% of the total 137Cs activity was found in the humic acid fraction, about 5% in the fulvic fraction and 46% in the residue fraction. Relatively high level of 137Cs activity in soil (ca. 50%) was thus still left unsolved in the residue fraction. About 29% of 137Cs activity concentration in fungal mycelia was found as water soluble with a range of 11 to 41%. Additionally 24% of the 137Cs activity from mycelia was released by 1 M ammonium acetate extraction. Together, water and 1 M ammonium acetate extraction released about 53% of the total 137Cs activity in the mycelia. In fruit bodies of mycorrhizal fungi, 68% of the total 137Cs inventory was found to be water soluble at room temperature and 93% at 80 degrees C.  相似文献   

10.
In this study, we measured 137Cs activity concentrations in the soil samples taken from agricultural lands in the Buyuk Menderes Basin in Turkey in 1997 and 1998. The soil samples were collected from 42 sites in this Basin. The activity concentration of 137Cs was found to range between 2.81+/-0.17 Bq.kg(-1) and 20.75+/-0.29 Bq.kg(-1). The effect of organic matter, clay, silt and sand contents and pH of the soil on the relative adsorption of the 137Cs on the soil surface were also studied.  相似文献   

11.
The spatial pattern of soil redistribution rate was investigated using cesium-137 (137Cs) within a cultivated complex hillslope in western Iran. The relationship between soil redistribution rate and soil organic carbon and total nitrogen pattern were studied using co-regionalization analysis. Ninety-one soil cores were sampled for 137Cs, total nitrogen, and soil organic carbon measurements. The simplified mass balance model estimated a gross erosion rate of 29.8 t ha−1 yr−1 and a net soil deposition rate of 21.8 t ha−1 yr−1; hence, a net soil loss rate of 8 t ha−1 yr−1. This magnitude of soil erosion rate is higher than the acceptable rate in semiarid regions. Co-regionalization analysis and co-dispersive coefficients among the selected variables showed that only a small fraction of the variability in total nitrogen and soil organic carbon could be explained by soil redistribution and that the remaining might be the result of different management practices by local farmers.  相似文献   

12.
Radionuclide content in soils from four locations in a tropical rainforest near Golfito in Southern Costa Rica was investigated. For comparison, two nearby locations in open grassland were also studied. From each site 5 soil cores down to a depth of 15 cm were taken. The median contamination with 137Cs was 584 Bq m-2 (reference date 1 January 1996) and the coefficient of variation (CV) was 50%. This contamination can be attributed to global fallout from atmospheric nuclear weapon tests between 1945 and 1980. The mean contamination is slightly lower than the value expected for the latitude (8 degrees 42': 700 Bq m-2), which may be explained by migration of radiocaesium to subsoil below 15 cm or by uptake into the living biomass. Out of the total variability of 50%, around 20% can be attributed to the sampling and measuring process uncertainties, thus leaving a 45% contribution of spatial variability. A significant difference between forest and meadow sites could be detected: the meadow sites showed lower radiocaesium soil inventories (median: 291 Bq m-2) than the forest sites (643 Bq m-2). This may be explained by the agricultural activities carried out on meadow sites which lead to an increased redistribution of caesium in the soil profile and therefore a larger fraction of the total 137Cs lying below 15 cm. Another reason for higher contamination levels under forest can be attributed to the high interception potential of dense tree canopies for dry deposition. Extrapolating the 137Cs concentration below the sampling horizon, i.e. accounting for the cut-off of the profiles by the sampling technique, results in an estimated mean of 710 Bq m-2 for the forest sites, which is very close to the expected figure. The mainly mineral part of the forest soil profiles was analysed for the 137Cs transport parameters, apparent convection velocity (v = 0.14 +/- 0.09 cm a-1) and apparent diffusion constant (D = 0.79 +/- 0.49 cm2 a-1). The maximum concentration can be found at 5.3 +/- 2.9 cm depth, the half-value depth being 7.4 +/- 1.3 cm. The mean 40K activity concentration was 175 Bq kg-1 dry matter (CV = 69%) and 226Ra and 228Ra concentrations of 9.90 Bq kg-1 (CV = 23%) and 7.93 Bq kg-1 (CV = 20%) have been found, respectively.  相似文献   

13.
Fallout from the Chernobyl reactor accident due to the transport of a radioactive cloud over Lebanon in the beginning of May 1986 was studied 12 years after the accident for determining the level of (137)Cs concentration in soil. Gamma spectroscopy measurements were performed by using coaxial high sensitivity HPGe detectors. More than 90 soil samples were collected from points uniformly distributed throughout the land of Lebanon in order to evaluate their radioactivity. The data obtained showed a relatively high (137)Cs activity per surface area contamination, up to 6545Bqm(-2) in the top soil layer 0-3cm. The average activity of (137)Cs in the top soil layer 0-3cm in depth was 59.7Bqkg(-1) dry soil ranging from 15 to 119Bqkg(-1) dry soil. The horizontal variability was found to be about 45% between the sampling sites. The depth distribution of total (137)Cs activity in soil showed an exponential decrease. Estimation of the annual effective dose due to external radiation from (137)Cs contaminated soil for selected sites gave values ranging from 19.3 to 91.6 micro Svy(-1).  相似文献   

14.
(137)Cs released during 1954-1974 from nuclear production reactors on the Savannah River Site, a US Department of Energy nuclear materials production site in South Carolina, contaminated a portion of the Savannah River floodplain known as Creek Plantation. (137)Cs activity concentrations have been measured in Creek Plantation since 1974 making it possible to calculate effective half-lives for (137)Cs in soil and vegetation and assess the spatial distribution of contaminants on the floodplain. Activity concentrations in soil and vegetation were higher near the center of the floodplain than near the edges as a result of frequent inundation coupled with the presence of low areas that trapped contaminated sediments. (137)Cs activity was highest near the soil surface, but depth related differences diminished with time as a likely result of downward diffusion or leaching. Activity concentrations in vegetation were significantly related to concentrations in soil. The plant to soil concentration ratio (dry weight) averaged 0.49 and exhibited a slight but significant tendency to decrease with time. The effective half-lives for (137)Cs in shallow (0-7.6 cm) soil and in vegetation were 14.9 (95% CI=12.5-17.3) years and 11.6 (95% CI=9.1-14.1) years, respectively, and rates of (137)Cs removal from shallow soil and vegetation did not differ significantly among sampling locations. Potential health risks on the Creek Plantation floodplain have declined more rapidly than expected on the basis of radioactive decay alone because of the relatively short effective half-life of (137)Cs.  相似文献   

15.
After the Chernobyl accident, high activity concentrations of (137)Cs (>1 MBq m(-2)) were detected in a riparian swamp in the central-eastern part of Sweden. The objective of this study was to clarify the redistribution processes behind the accumulation of (137)Cs in the wetland. A mass balance budget of (137)Cs was calculated based on soil and sediment samples and reports in the literature. Results showed that accumulation occurred over several years. Of all the (137)Cs activity discharged between 1986 and 2002 from the upstream lake, 29% was estimated to be retained in the wetland. In 2003, measurements showed that 17 kBq m(-2) sedimented on the stream banks of the wetland. Continuing overbank sedimentation by spring flooding prolongs the time that the wetland will contain high activity concentrations of (137)Cs. Consequently, organisms living in wetlands serving as sinks for (137)Cs may become exposed over long time periods to high activity concentrations.  相似文献   

16.
During 1996-1998, 16 fruit bodies of different species and 204 soil samples down to 10 cm in the close vicinity of the fruit body sites were collected in a coniferous forest in the Ovruch region of Ukraine. The soil samples were sliced into 1 or 2 cm layers and the fungal mycelium was prepared from each of the layers. The 137Cs activity concentration was determined in both soil and mycelium. The mean weight of fungal mycelium was 13.8 mg g(-1) of soil in the upper 4 cm and 7.3 mg g(-1) when measured for the upper 10 cm. At the sites of Paxillus involutus and Sarcodon imbricatus, the mycelium was rather homogeneously distributed in the upper 10 cm and at sites of Xerocomus subtomentosus and Cantharellus cibarius, the mycelium was distributed mostly in the upper layers. The highest 137Cs activity concentrations were found in the upper layers of the soil profile. The 137Cs activity concentrations were usually higher in the fruit bodies compared with the mycelium, with ratios ranging from 0.1 to 66 and a mean of 9.9. The percentage of the total inventory of 137Cs in the soil found in the fungal mycelium ranged from 0.1 to 50%, with a mean value of 15%.  相似文献   

17.
This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K(2)SO(4)-extractable and microbially stored (137)Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of (137)Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored (137)Cs amounted to 0.64+/-0.14kBqm(-2) which corresponds to about 1.2-2.7% of the total (137)Cs soil inventory. At lower altitudes, microbial (137)Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored (137)Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of (137)Cs in soils and in the (137)Cs uptake by plants.  相似文献   

18.
The fallout radionuclides (FRNs) (137)Cs, (210)Pb(ex) and (7)Be are increasingly being used as a means of obtaining quantitative information on soil erosion and sediment redistribution rates within agricultural landscapes, over a range of different timescales, and they are frequently seen to represent a valuable complement to conventional measurement techniques. The recent development of the (7)Be method has greatly extended the timescale over which FRNs can be used, by permitting assessment of short-term soil erosion linked to individual events and changing soil management practices. This paper aims to review the advantages and limitations of each of the three FRNs and to identify key knowledge gaps linked to their use. In addition, guidelines for selecting the most appropriate FRN and associated approach, in order to deal with a range of spatial and temporal scales and to investigate specific sets of agro-environmental problems, are provided. Key requirements for future work, related to the application of FRNs in soil erosion investigations, are also identified. These include the upscaling of the approach to the catchment scale and a shift from use of the approach as a research tool to a decision support tool.  相似文献   

19.
Vertical distribution and inventories of (137)Cs have been determined using radiocesium distributions in presumably undistributed soil profiles, collected from 36 sites distributed all over Syria (eastern Mediterranean region). Vertical distributions of (137)Cs in the collected profiles were found to be strongly correlated with soil type and five groups were identified. Based on these profiles, total (137)Cs inventory (bomb test and Chernobyl) varied between 320 Bq m(-2) and 9,647 Bq m(-2). Geographical mapping of (137)Cs inventories showed that the highest values were found in the coastal, middle and north-east regions of Syria indicating that Chernobyl atmospheric contribution to the total (137)Cs deposition in the region is predominant. In contrast, the lowest values were found in the south-east region (Syrian Badia), where a relatively uniform distribution was observed, which may only be attributed to the past global nuclear bomb test. The measured inventories were also compared with a mathematical model for estimating bomb derived (137)Cs reference inventories.  相似文献   

20.
239+240Pu, 90Sr and 137Cs inventories in surface soils of Vietnam   总被引:1,自引:0,他引:1  
Fallout 239+240Pu, 238Pu, 90Sr and 137Cs inventories in surface soils were measured for 20 locations in northern Vietnam yielding the mean values (+/- standard error) of 26.5+/-3.8 Bq m(-2) for 239+240Pu, 1048+/-143 Bq m(-2) for 137Cs and 212+/-28 Bq m(-2) for 90Sr. The concentrations of 137Cs and plutonium isotopes strongly correlate with each other resulting in a stable 239+240Pu/137Cs inventory ratio of 0.025+/-0.002. Among soil parameters, organic matter and fulvic acids strongly correlate with caesium and plutonium isotopes, especially in the 0-10 cm layer. 137Cs and 239+240Pu are distributed rather similarly over the 0-10 cm and 10-20 cm layers. At locations with high contents of sand (82-93%) along the South China Sea coast, the downward percolation by rainwater results in a higher accumulation of 239+240Pu and 137Cs in the 10-20 cm layer. The mean 137Cs/ 90Sr inventory ratio is 9.3+/-2.2, and the correlation is weak between these isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号