首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zooplankton carcasses are common within aquatic systems and potentially serve as organic-rich substrates for bacteria. We compared the microbial decomposition of representative crustacean (copepod) and non-crustacean (rotifer) zooplankton carcasses and monitored changes in carcass protein and lipid contents. Our results showed that carcass decomposition was mainly driven by bacteria colonizing from the surrounding water. Carcass-associated bacteria displayed higher protease and lipase activities than free-living bacteria. Protein content of copepod carcasses decreased by 70% within the first 8 h and shifted from larger to smaller sized proteins, while protein loss in rotifer carcasses was insignificant. Carcass lipid content did not change significantly over 24 h in either zooplankton type, although polar branched fatty acids increased on copepod carcasses indicating an increase in viable microbial biomass. Our results suggest differential turnover of protein versus lipid within a zooplankton carcass and that carcasses from different zooplankton groups would affect water column microbial processes differently.  相似文献   

2.
A survey of the distribution of six enzymes of nitrogen and carbohydrate metabolism was carried out with eleven species of marine phytoplankton representing seven classes. The activities of some enzymes, e.g. NADPH-glutamate dchydrogenase, were absent in several organisms. The effects of nitrogen deficiency on enzyme activities in nitrogen-limited chemostat cultures ofChlorella stigmatophora were investigated. Increasing nitrogen deficiency was accompanied by increases in the activity of nitrate reductase, NADPH-glutamate dehydrogenase and glutamine synthetase, and decreases in photosynthesis, respiration, chlorophyll and total cell protein. In nitrogen-deficient algae, an increase in the activity of the nitrogen-assimilating enzymes may facilitate the efficient utilization of available nitrogen under these conditions.Present address: School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118, USA  相似文献   

3.
A hypothesis for progressive nitrogen limitation (PNL) proposes that net primary production (NPP) will decline through time in ecosystems subjected to a step-function increase in atmospheric CO2. The primary mechanism driving this response is a rapid rate of N immobilization by plants and microbes under elevated CO2 that depletes soils of N, causing slower rates of N mineralization. Under this hypothesis, there is little long-term stimulation of NPP by elevated CO2 in the absence of exogenous inputs of N. We tested this hypothesis using data on the pools and fluxes of C and N in tree biomass, microbes, and soils from 1997 through 2002 collected at the Duke Forest free-air CO2 enrichment (FACE) experiment. Elevated CO2 stimulated NPP by 18-24% during the first six years of this experiment. Consistent with the hypothesis for PNL, significantly more N was immobilized in tree biomass and in the O horizon under elevated CO2. In contrast to the PNL hypothesis, microbial-N immobilization did not increase under elevated CO2, and although the rate of net N mineralization declined through time, the decline was not significantly more rapid under elevated CO2. Ecosystem C-to-N ratios widened more rapidly under elevated CO2 than ambient CO2 indicating a more rapid rate of C fixation per unit of N, a processes that could delay PNL in this ecosystem. Mass balance calculations demonstrated a large accrual of ecosystem N capital. Is PNL occurring in this ecosystem and will NPP decline to levels under ambient CO2? The answer depends on the relative strength of tree biomass and O-horizon N immobilization vs. widening C-to-N ratios and ecosystem-N accrual as processes that drive and delay PNL, respectively. Only direct observations through time will definitively answer this question.  相似文献   

4.
Conant RT  Steinweg JM  Haddix ML  Paul EA  Plante AF  Six J 《Ecology》2008,89(9):2384-2391
Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.  相似文献   

5.
The forest litter decomposition model (FLDM) described in this paper provides an important basis for assessing the impacts of forest management on seasonal stream water quality and export of dissolved organic carbon (DOC). By definition, models with annual time steps are unable to capture seasonal, within-year variation. In order to simulate seasonal variation in litter decomposition and DOC production and export, we have modified an existing annual FLDM to account for monthly dynamics of decomposition and residual mass in experimental litterbags placed in 21 different forests across Canada.The original annual FLDM was formulated with three main litter pools (fast, slow, and very slow decomposing litter) to address the fact that forest litter is naturally composed of a mixture of organic compounds that decompose at different rates. The annual FLDM was shown to provide better simulations than more complex models like CENTURY and SOMM.The revised monthly model retains the original structure of the annual FLDM, but separates litter decomposition from nitrogen (N) mineralization. In the model, monthly soil temperature, soil moisture, and mean January soil temperature are shown to be the most important controlling variables of within-year variation in decomposition. Use of the three variables in a process-based definition of litter decomposition is a significant departure from the empirical definition in the annual model. The revised model is shown to give similar calculations of residual mass and N concentration as the annual model (r2 = 0.91, 0.78), despite producing very different timeseries of decomposition over six years. It is shown from a modelling perspective that (i) forest litter decomposition is independent of N mineralization, whereas N mineralization is dependent on litter decomposition, and (ii) mean January soil temperature defines litter decomposition in the summer because of winter-temperatures’ role in modifying forest-floor microorganism community composition and functioning in the following summer.  相似文献   

6.
模拟氮沉降对兴安落叶松林凋落物分解的影响   总被引:1,自引:0,他引:1  
试验施加NH4NO3、KNO3和NH4Cl3种氮肥,设置对照(N0,0 kg·hm-2·a-1)、低氮(N1,10 kg·hm-2·a-1)、中氮(N2,20kg·hm-2·a-1)、高氮(N3,40 kg·hm-2·a-1)4个施氮水平,通过交互试验,研究模拟N沉降对大兴安岭兴安落叶松(Larix gmelinii)林凋落物分解的影响。结果表明,在兴安落叶松林凋落物分解过程中,叶分解最快,其次是枝,分解最慢的为果,在分解16个月后,枝、叶、果的质量残留率分别为76.68%、47.98%和80.43%,3者异极其显著(p〈0.01)。凋落物叶分解95%所需时间为6.71 a,而枝和果所需时间分别为18.07和18.10 a。在模拟大气氮沉降下凋落物分解过程中,施加KNO3,N2处理下的枝、叶、果的质量残留率极显著低于N3处理(p〈0.01),显著低于N0和N1处理。施加NH4Cl下,N1处理显著低于N0处理(p〈0.05)。在施加NH4NO3下,N1水平处理下的枝、叶、果的分解速率显著增加(p〈0.05),但是随着施氮量的增加,分解速率就会减慢,N3处理下,有着明显的抑制作用(p〈0.05),说明氮沉降对于凋落物分解有着促进作用,但是随着时间和氮沉降量的增加,促进作用延缓甚至是抑制作用。  相似文献   

7.
Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid profiles) and whether community composition was related to potential net nitrogen (N) mineralization rates in southern Appalachian (USA) forest stands abandoned from agriculture or logging and reforested >50 yr ago. Microbial community composition was determined by a hybrid procedure of phospholipid fatty acid (PLFA) and fatty acid methyl ester (FAME) analysis. We found that community composition varied significantly with past land use. Communities in formerly farmed stands had a higher relative abundance of markers for gram-negative bacteria and a lower abundance of markers for fungi compared with previously logged and reference (i.e., no disturbance history) stands. Potential net N mineralization rates were negatively correlated with fungal and gram-negative bacterial markers in both farmed and reference stands, and fungal abundance and soil bulk density effectively predicted mineralization rates in all stands. Our results indicate that the alteration of microbial communities by historical land use may influence the ecosystem processes they mediate. This is in contrast to typical expectations about microbial community resilience to change. Here, the decrease in fungal abundance observed from disturbance appeared to result in decreased nitrogen mineralization over the long term.  相似文献   

8.
Environmental Chemistry Letters - The European Union (EU) has advised to increase the production of grain legumes, both to reduce EU dependency on soybean imports from the Americas and to reduce...  相似文献   

9.
The nutrient status (limitation vs sufficiency) of dinoflagellates (zooxanthellae) symbiotic with reef corals in Bermuda was assessed in 1989 and 1990 by measuring the enhancement of dark carbon fixation with 20 M ammonium by isolated symbionts. A colony ofMadracis mirabilis was kept in the laboratory and fed daily or starved for one month. Symbionts from fed portions of the colony had ammonium-enhancement ratios (NH 4dark + ; SWdark;SW=seawater without added ammonium) similar to those of the original field population (1.2 to 1.3). Ammonium-enhancement ratios increased with starvation of the host (x1.7) as did values forV D:V L [(ammonium dark rate-seawater dark rate): light rate in seawater]. Both parameters indicated decreasing nitrogen sufficiency of the algae when the host was not fed, but starvation appeared to affect these algae less than symbionts of sea anemones. Field samples of zooxanthellae fromM. mirabilis (Three Hill Shoals and Bailey's Bay Flats) yielded results similar to those for fed corals, but those taken from Bailey's Bay Flats in May 1990 yielded exceptionally high values for enhancement (>3) andV D:V L indicating pronounced nitrogen limitation at the time of sampling. We sampled zooxanthellae from populations ofMontastrea annularis at 8 m (Three Hill Shoals) and 24 m (Soldier's Point) depths. Enhancement andV D:V L values for zooxanthellae from the 8 m corals were density-dependent: symbionts from corals with normal symbiont densities displayed the most nitrogen limitation (enhancement values=1.4 to 2.0), while those from bleached corals with lower density exhibited enhancement andV D:V L values typical of nitrogen-sufficient algae. Symbionts isolated from the 25 m corals yielded the highest values, and appeared to exhibit the least nitrogen-sufficiency for this species.  相似文献   

10.
Experimental nutrient (N, P, and N+P) additions to shallow (ca. 1 m)Cymodocea nodosa (Ucria) Aschers. stands growing in patches and in a continuous meadow in a Mediterranean Bay (Alfacs Bay, NE Spain) in 1988 demonstrated mid-summer growth to be strongly P-limited, as suggested by the high N:P ratios (>35) in unmanipulated plants. P additions resulted in increased leaf P content, reduced N:P ratios, and enhanced shoot growth and turnover in both populations. These effects promoted in turn a stand response, leading to increased biomass and, therefore, increased areal productivity in the plots receiving P. The stand response was largely attributable to a doubling of shoot density, indicating enhanced rhizome growth and branching.  相似文献   

11.
The effect of pH, nutrient and aeration was studied on the removal of colour and reduction of BOD, COD and heavy metals with addition of readily available source of nitrogen and phosphorus in concentration of 1.0 g/L. Recalcitrant compound was effectively degraded by active microbial consortia. The isolated bacteria were identified as Pseudomonas putida (S1), Citrobacter sp. (S4) and Enterobacter sp. (S5). These organisms not only decolourised effluent upto 97% but reduced BOD, COD, phenolics and sulfide upto 96.63, 96.80, 96.92 and 96.67% respectively within 24 hrs of aeration and the heavy metals were removed upto 82-99.80%. The TSS and TDS were sharply reduced due to degradation. The absorption maxima was also decreased to 90%. However, in control without the microbial consortium no noticeable change was produced.  相似文献   

12.
Iron plays an important role in marine primary productivity, and Synechococcus species as major contributors to the total photosynthetic biomass in the world’s oceans might be limited by iron supply in some regions. The present study aimed to compare the photosynthesis and flow cytometric signals of four Synechococcus strains grown under different iron concentrations with either nitrate or ammonium as the sole nitrogen source. Two oceanic strains were much more sensitive to iron limitation than two coastal strains. The inhibition of iron limitation on the growth, maximal PSII photochemical yield, maximal rate of relative electron transport and photochemical quenching of the two oceanic strains was higher than for their coastal counterparts. Under iron limitation condition, the connectivity factor between individual photosynthetic units (ρ) increased for the two coastal strains, while decreased for the two oceanic strains. Furthermore, iron limitation accelerated the Q A re-oxidation of the two oceanic strains and the PQ pool re-oxidation of the two coastal strains. Under iron limitation condition, the cell size of the two coastal strains and intracellular pigment concentrations of the two oceanic strains decreased, while the side light scatter/front light scatter (SS/FS) ratio of the two coastal strains increased. In contrast to iron limitation, nitrogen source only marginally affected the photosynthesis of the four Synechococcus strains. Ammonium enhanced the growth of the two coastal strains under iron-replete condition. For the two oceanic strains, ammonium increased their cell size and decreased their SS/FS ratio and intracellular pigment concentrations under iron-deplete and iron-replete conditions.  相似文献   

13.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

14.
Sperm economy and limitation in spiny lobsters   总被引:5,自引:0,他引:5  
Sperm limitation, when female fertilisation success is constrained by the supply of sperm, is generally perceived to be an uncommon feature of reproduction in species which directly transfer gametes during copulation. Male size, previous copulations, and the balance of expected reproductive return and future mating opportunity may, however, limit the amount of sperm males transfer to females. We used laboratory experiments where mate size could be manipulated and its consequences on spermatophore size and clutch size determined, to show that in two genera of spiny lobsters (Crustacea: Palinuridae) male reproductive output limits the size of clutches brooded by females. In Panulirus argus from the Florida Keys, we show that while male size affects spermatophore area, males also vary the amount of ejaculate positively with female size. Furthermore, the area of the spermatophore has a greater influence than female size on subsequent clutch weight. In Jasus edwardsii from New Zealand, female size, male size and mate order all affect clutch weight. In both species, clutches fertilised by small males in the laboratory are significantly smaller than clutches fertilised by large males. These results suggest that to ensure they receive sufficient sperm, females should either mate several times prior to oviposition, mate as early as possible in the reproductive season, or choose large, preferably unmated males as partners and thus compete with other females for preferred males. Sperm-limited female fecundity has the potential to limit the egg production of fished populations where large males are typically rare. Received: 18 May 1998 / Received in revised form: 20 November 1998 / Accepted: 30 November 1998  相似文献   

15.
The seasonal variation in growth rate of a population of Laminaria digitata (Huds.) Lamour growing at Arbroath, Scotland was studied between August 1981 and September 1982, and was found to follow the biphasic annual cycle typical of this genus. Growth rates were maximum (0.3 cm cm-1 mo-1) in early June and minimum (0.05 cm cm-1 mo-1) between September and January. An analysis of the relationship between the seasonal changes in environmental factors (inorganic nitrogen concentrations, irradiance and temperature) with those of growth rate and the accumulation or mobilisation of cellular reserves of carbohydrates and nitrate, indicated that growth was nitrogen-limited between June and October and light-limited (with a possible co-involvement of temperature) for the remainder of the year. These conclusions were supported by the seasonal changes in the ratio of actual: potential in-vivo nitrate reductase activities in L. digitata, thus confirming the suitability of this technique for monitoring the occurrence of nitrogen limitation in Laminaria spp. The seasonal changes in blade nitrate reductase activities closely followed those of growth rate, with maximum activities [0.3 mol NO 3 - reduced g-1 (wet wt) h-1] being present in late May and minimum levels [0.01 mol NO 3 - reduced g-1 (wet wt) h-1] occurring between November and March. The correlation observed between nitrate reductase activities and growth rate is consistent with the ability of Laminaria spp. to store excess inorganic nitrogen, available during winter and early spring, as NO 3 - , and with the requirement to conserve enzyme protein during the summer period of nitrogen limitation.  相似文献   

16.
《Ecological modelling》2005,187(4):426-448
We present a new decomposition model of C and N cycling in forest ecosystems that simulates N mineralisation from decomposing tree litter. It incorporates a mechanistic representation of the role of soil organisms in the N mineralisation-immobilisation turnover process during decomposition. We first calibrate the model using data from decomposition of 14C-labelled cellulose and lignin and 14C-labelled legume material and then calibrate and test it using mass loss and N loss data from decomposing Eucalyptus globulus residues. The model has been linked to the plant production submodel of the G’DAY ecosystem model, which previously used the CENTURY decomposition submodel for simulating C and N cycling. The key differences between this new decomposition model and the previous one, based on the CENTURY model, are: (1) growth of microbial biomass is the process that drives N mineralisation-immobilisation, and microbial succession is simulated; (2) decomposition of litter can be N-limited, depending on soil inorganic N availability relative to N requirements for microbial growth; (3) ‘quality’ of leaf and fine root litter is expressed in terms of biochemically measurable fractions; (4) the N:C ratio of microbial biomass active in decomposing litter is a function of litter quality and N availability; and (5) the N:C ratios of soil organic matter (SOM) pools are not prescribed but are instead simulated output variables defined by litter characteristics and soil inorganic N availability. With these modifications the model is able to provide reasonable estimates of both mass loss and N loss by decomposing E. globulus leaf and branch harvest residues in litterbag experiments. A sensitivity analysis of the decomposition model to selected parameters indicates that parameters regulating the stabilisation of organic C and N, as well as those describing incorporation of soil inorganic N in Young-SOM (biochemical immobilisation of N) are particularly critical for long-term applications of the model. A parameter identifiability analysis demonstrates that simulated short-term C and N loss from decomposing litter is highly sensitive to three model parameters that are identifiable from the E. globulus litterbag data.  相似文献   

17.
微生物燃料电池产电研究及微生物多样性分析   总被引:1,自引:0,他引:1  
以乙酸钠为阳极底物,碳毡材料为阴阳电极,构建了无介体双室微生物燃料电池(Microbial fuel cell,MFC),研究不同阴极受体、外接电阻、乙酸钠浓度和不同接种方式等因素对电池产电性能的影响.根据不同接种方式下微生物燃料电池产电性能差异,利用PCR-DGGE技术对不同接种方式下的微生物多样性进行分析.研究结果表明:在500 mL的阴阳极反应体系中,当接入500 Ω外电阻,阴极电子受体为高锰酸钾,阳极乙酸钠质量浓度为6.46 g/L,只接入附着有大量微生物的电极时,微生物燃料电池产电性能最好,最大电功率密度可达353.57 mW/m2,库伦效率为39.35%;微生物多样性分析显示.δ-变形菌纲、β-变形菌纲和拟杆菌门的菌种更适应微生物燃料电池的运行环境,能在电极上大量富集.提高电池的产电性能.是电极上的优势菌群.图8表1参21  相似文献   

18.
The way in which simultaneously limiting nutrients are supposed to act upon the algal growth rate is an important aspect of aquatic ecosystem modelling and research. Three different relations between the multiple nutrient limitation and two single nutrient limitations are developed from different biochemical models: a “multiplicative” relation, used in most dynamic ecosystem models, a new “sequential” relation and a “threshold” relation, sensu Liebig. The characteristics and practical consequences of these relations are investigated. By means of three experiments, derived from the literature, it is shown that the multiplicative relation yields the statistically significant worst growth rate predictions.  相似文献   

19.
Experimental evidence for herbivore limitation of the treeline   总被引:1,自引:0,他引:1  
Speed JD  Austrheim G  Hester AJ  Mysterud A 《Ecology》2010,91(11):3414-3420
The treeline ecotone divides forest from open alpine or arctic vegetation states. Treelines are generally perceived to be temperature limited. The role of herbivores in limiting the treeline is more controversial, as experimental evidence from relevant large scales is lacking. Here we quantify the impact of different experimentally controlled herbivore densities on the recruitment and survival of birch Betula pubescens tortuosa along an altitudinal gradient in the mountains of southern Norway. After eight years of summer grazing in large-scale enclosures at densities of 0, 25, and 80 sheep/km2, birch recruited within the whole altitudinal range of ungrazed enclosures, but recruitment was rarer in enclosures with low-density sheep and was largely limited to within the treeline in enclosures with high-density sheep. In contrast, the distribution of saplings (birch older than the experiment) did not differ between grazing treatments, suggesting that grazing sheep primarily limit the establishment of new tree recruits rather than decrease the survival of existing individuals. This study provides direct experimental evidence that herbivores can limit the treeline below its potential at the landscape scale and even at low herbivore densities in this climatic zone. Land use changes should thus be considered in addition to climatic changes as potential drivers of ecotone shifts.  相似文献   

20.
Photochemical reactions induced by sunlight contribute to the overall chemistry of natural water systems in many ways. The degradation of pollutants, dissolution of iron and manganese sediments, cycling of trace metal nutrients, and reactions of aquatic nitrogen and oxygen species are some of the many processes having solar photolysis pathways. This paper reviews recent research concerned with photo‐decomposition of pollutants, photolysis of nitrite and nitrate, photosensitization by humic materials and the generation of reactive intermediates. In addition, background material is presented concerning the basic principles of photochemistry and the limited wavelength range of effective solar radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号