首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  Caughley (1994) argued that researchers working on threatened populations tended to follow the "small population paradigm" or the "declining population paradigm," and that greater integration of these paradigms was needed. Here I suggest that two related paradigms exist at the broader spatial scale, namely the metapopulation paradigm and habitat paradigm, and that these two paradigms also need to be integrated if we are to provide sound management advice. This integration is not trivial, and I outline five problems that need to be addressed: (1) habitat variables may not measure habitat quality, so site-specific data on vital rates are needed to resolve the effects of habitat quality and metapopulation dynamics; (2) measurements of vital rates may be confounded by movements; (3) vital rates may be density dependent; (4) vital rates may be affected by genotype; and (5) vital rates cannot be measured in unoccupied patches. I reviewed papers published in Conservation Biology from 1994 to 2003 and found 41 studies that analyzed data from 10 or more sites to understand the factors limiting species' distributions. Five of the analyses presented were purely within the metapopulation paradigm, 14 were purely within the habitat paradigm, 17 involved elements of both paradigms, and 7 were theoretically ambiguous (2 papers presented 2 distinct analyses and were counted twice). This suggests that many researchers appreciate the need to integrate the paradigms. Only one study, however, used data on vital rates to resolve the effects of habitat quality and metapopulation dynamics (problem 1), and this study did not address problems 2–5. I conclude that more intensive research incorporating site-specific data on vital rates and movement is needed to complement the numerous analyses of distributional data being produced.  相似文献   

2.
Abstract:  The lack of management experience at the landscape scale and the limited feasibility of experiments at this scale have increased the use of scenario modeling to analyze the effects of different management actions on focal species. However, current modeling approaches are poorly suited for the analysis of viability in dynamic landscapes. Demographic (e.g., metapopulation) models of species living in these landscapes do not incorporate the variability in spatial patterns of early successional habitats, and landscape models have not been linked to population viability models. We link a landscape model to a metapopulation model and demonstrate the use of this model by analyzing the effect of forest management options on the viability of the Sharp-tailed Grouse (  Tympanuchus phasianellus ) in the Pine Barrens region of northwestern Wisconsin (U.S.A.). This approach allows viability analysis based on landscape dynamics brought about by processes such as succession, disturbances, and silviculture. The landscape component of the model (LANDIS) predicts forest landscape dynamics in the form of a time series of raster maps. We combined these maps into a time series of patch structures, which formed the dynamic spatial structure of the metapopulation component (RAMAS). Our results showed that the viability of Sharp-tailed Grouse was sensitive to landscape dynamics and demographic variables such as fecundity and mortality. Ignoring the landscape dynamics gave overly optimistic results, and results based only on landscape dynamics (ignoring demography) lead to a different ranking of the management options than the ranking based on the more realistic model incorporating both landscape and demographic dynamics. Thus, models of species in dynamic landscapes must consider habitat and population dynamics simultaneously.  相似文献   

3.
Abstract:  A joint demographic and population genetics stage-based model for a subdivided population was applied to Gentiana pneumonanthe , an early successional perennial herb, at a regional (metapopulation) scale. We used numerical simulations to determine the optimal frequency of habitat disturbance (sod cutting) and the intensity of gene flow among populations of G. pneumonanthe to manage both population viability and genetic diversity in this species. The simulations showed that even small populations that initially had near-equal allele frequencies could, if managed properly through sod cutting every 6 to 7 years, sustain their high genetic variation over the long run without gene flow. The more the allele frequencies in the small populations are skewed, however, the higher the probability that in the absence of gene flow, some alleles will be lost and within-population genetic variation will decrease even under proper management. This implies that although local population dynamics should be the major target for management, regional dynamics become important when habitat fragmentation and decreased population size lead to the loss of local genetic diversity. The recommended strategy to improve genetic composition of small populations is the introduction of seeds or seedlings of nonlocal origin.  相似文献   

4.
Abstract:  Population viability analysis (PVA) is an effective framework for modeling species- and habitat-recovery efforts, but uncertainty in parameter estimates and model structure can lead to unreliable predictions. Integrating complex and often uncertain information into spatial PVA models requires that comprehensive sensitivity analyses be applied to explore the influence of spatial and nonspatial parameters on model predictions. We reviewed 87 analyses of spatial demographic PVA models of plants and animals to identify common approaches to sensitivity analysis in recent publications. In contrast to best practices recommended in the broader modeling community, sensitivity analyses of spatial PVAs were typically ad hoc, inconsistent, and difficult to compare. Most studies applied local approaches to sensitivity analyses, but few varied multiple parameters simultaneously. A lack of standards for sensitivity analysis and reporting in spatial PVAs has the potential to compromise the ability to learn collectively from PVA results, accurately interpret results in cases where model relationships include nonlinearities and interactions, prioritize monitoring and management actions, and ensure conservation-planning decisions are robust to uncertainties in spatial and nonspatial parameters. Our review underscores the need to develop tools for global sensitivity analysis and apply these to spatial PVA.  相似文献   

5.
Abstract:  Scalar population models, commonly referred to as count-based models, are based on time-series data of population sizes and may be useful for screening-level ecological risk assessments when data for more complex models are not available. Appropriate use of such models for management purposes, however, requires understanding inherent biases that may exist in these models. Through a series of simulations, which compared predictions of risk of decline of scalar and matrix-based models, we examined whether discrepancies may arise from different dynamics displayed due to age structure and generation time. We also examined scalar and matrix-based population models of 18 real populations for potential patterns of bias in population viability estimates. In the simulation study, precautionary bias (i.e., overestimating risks of decline) of scalar models increased as a function of generation time. Models of real populations showed poor fit between scalar and matrix-based models, with scalar models predicting significantly higher risks of decline on average. The strength of this bias was not correlated with generation time, suggesting that additional sources of bias may be masking this relationship. Scalar models can be useful for screening-level assessments, which should in general be precautionary, but the potential shortfalls of these models should be considered before using them as a basis for management decisions.  相似文献   

6.
7.
Abstract:  Whenever population viability analysis (PVA) models are built to help guide decisions about the management of rare and threatened species, an important component of model building is the specification of a habitat model describing how a species is related to landscape or bioclimatic variables. Model-selection uncertainty may arise because there is often a great deal of ambiguity about which habitat model structure best approximates the true underlying biological processes. The standard approach to incorporate habitat models into PVA is to assume the best habitat model is correct, ignoring habitat-model uncertainty and alternative model structures that may lead to quantitatively different conclusions and management recommendations. Here we provide the first detailed examination of the influence of habitat-model uncertainty on the ranking of management scenarios from a PVA model. We evaluated and ranked 6 management scenarios for the endangered southern brown bandicoot ( Isoodon obesulus ) with PVA models, each derived from plausible competing habitat models developed with logistic regression. The ranking of management scenarios was sensitive to the choice of the habitat model used in PVA predictions. Our results demonstrate the need to incorporate methods into PVA that better account for model uncertainty and highlight the sensitivity of PVA to decisions made during model building. We recommend that researchers search for and consider a range of habitat models when undertaking model-based decision making and suggest that routine sensitivity analyses should be expanded to include an analysis of the impact of habitat-model uncertainty and assumptions.  相似文献   

8.
9.
10.
Persistence of Forest Birds in the Costa Rican Agricultural Countryside   总被引:8,自引:1,他引:8  
Abstract:  Understanding the persistence mechanisms of tropical forest species in human-dominated landscapes is a fundamental challenge of tropical ecology and conservation. Many species, including more than half of Costa Rica's native land birds, use mostly deforested agricultural countryside, but how they do so is poorly known. Do they commute regularly to forest or can some species survive in this human-dominated landscape year-round? Using radiotelemetry, we detailed the habitat use, movement, foraging, and nesting patterns of three bird species, Catharus aurantiirostris , Tangara icterocephala , and Turdus assimilis , by obtaining 8101 locations from 156 individuals. We chose forest birds that varied in their vulnerability to deforestation and were representative of the species found both in forest and human-dominated landscapes. Our study species did not commute from extensive forest; rather, they fed and bred in the agricultural countryside. Nevertheless, T. icterocephala and T. assimilis , which are more habitat sensitive, were highly dependent on the remaining trees. Although trees constituted only 11% of land cover, these birds spent 69% to 85% of their time in them. Breeding success of C. aurantiirostris and T. icterocephala in deforested habitats was not different than in forest remnants, where T. assimilis experienced reduced breeding success. Although this suggests an ecological trap for T. assimilis , higher fledgling survival in forest remnants may make up for lower productivity. Tropical countryside has high potential conservation value, which can be enhanced with even modest increases in tree cover. Our findings have applicability to many human-dominated tropical areas that have the potential to conserve substantial biodiversity if appropriate restoration measures are taken.  相似文献   

11.
酸性硫酸盐土的发育与分布存在着较大的时空变异,表现为空问分布的不连续性、发育时间的间断性、环境影响的级联性以及开发利用的风险性,因此往往给实际利用带来较大的困难。本文对酸性硫酸盐士的形成与发育特点、野外景观生态诊断以及酸性硫酸盐土的时空分布与演替模式等方面进行探讨,旨在使人们正确地认识酸性硫酸盐土,以便更有效地利用这类土地资源。  相似文献   

12.
加拿大森林可持续管理标准和指标评介   总被引:1,自引:0,他引:1  
介绍了加拿大森林可持续管理标准和指标的产生过程 ,详细介绍了该标准和指标的特点和其中的 6个标准、若干个要素、指标等 ,结合我国的实际分析了该标准和指标对我国可持续森林管理的启示和借鉴作用。  相似文献   

13.
Abstract:  Commercial and subsistence fisheries pressure is increasing in the Gulf of California, Mexico. One consequence often associated with high levels of fishing pressure is an increase in bycatch of marine mammals and birds. Fisheries bycatch has contributed to declines in several pinniped species and may be affecting the California sea lion ( Zalophus californianus ) population in the Gulf of California. We used data on fisheries and sea lion entanglement in gill nets to estimate current fishing pressure and fishing rates under which viable sea lion populations could be sustained at 11 breeding sites in the Gulf of California. We used 3 models to estimate sustainable bycatch rates: a simple population-growth model, a demographic model, and an estimate of the potential biological removal. All models were based on life history and census data collected for sea lions in the Gulf of California. We estimated the current level of fishing pressure and the acceptable level of fishing required to maintain viable sea lion populations as the number of fishing days (1 fisher/boat setting and retrieving 1 day's worth of nets) per year. Estimates of current fishing pressure ranged from 101 (0–405) fishing days around the Los Machos breeding site to 1887 (842–3140) around the Los Islotes rookery. To maintain viable sea lion populations at each site, the current level of fishing permissible could be augmented at some sites and should be reduced at other sites. For example, the area around San Esteban could support up to 1428 (935–2337) additional fishing days, whereas fishing around Lobos should be reduced by at least 165 days (107–268). Our results provide conservation practitioners with site-specific guidelines for maintaining sustainable sea lion populations and provide a method to estimate fishing pressure and sustainable bycatch rates that could be used for other marine mammals and birds .  相似文献   

14.
Abstract:  The viability of populations is influenced by driving forces such as density dependence and climate variability, but most population viability analyses (PVAs) ignore these factors because of data limitations. Additionally, simplified PVAs produce limited measures of population viability such as annual population growth rate (λ) or extinction risk. Here we developed a "mechanistic" PVA of threatened Chinook salmon ( Oncorhynchus tshawytscha ) in which, based on 40 years of detailed data, we related freshwater recruitment of juveniles to density of spawners, and third-year survival in the ocean to monthly indices of broad-scale ocean and climate conditions. Including climate variability in the model produced important effects: estimated population viability was very sensitive to assumptions of future climate conditions and the autocorrelation contained in the climate signal increased mean population abundance while increasing probability of quasi extinction. Because of the presence of density dependence in the model, however, we could not distinguish among alternative climate scenarios through mean λ values, emphasizing the importance of considering multiple measures to elucidate population viability. Our sensitivity analyses demonstrated that the importance of particular parameters varied across models and depended on which viability measure was the response variable. The density-dependent parameter associated with freshwater recruitment was consistently the most important, regardless of viability measure, suggesting that increasing juvenile carrying capacity is important for recovery.  相似文献   

15.
Virtual Corridors for Conservation Management   总被引:1,自引:0,他引:1  
Abstract:  Corridors are usually perceived as clearly visible, linear landscape elements embedded in a hostile environment that connect two or more larger blocks of habitat. Animal response to certain aspects of landscape heterogeneity, however, can channel their movements into specific routes that may appear similar to their surroundings. These routes can be described as "virtual corridors" (VCs). Here we contribute to the foundation of the concept of VCs and highlight their implications for conservation management. We used an individual-based model to analyze the formation of VCs in the case of hilltopping in butterflies—where males and virgin females ascend to hilltops and mate. We simulated butterfly movements in two different topographically heterogeneous landscapes. We analyzed the movement patterns with respect to one parameter, the intensity of response to topography. Virtual corridor structure depended on the behavioral parameter, landscape, and location of the source patch. Within a realistic range of the behavioral parameter and in a realistic landscape, VC structures may be complex and require individual-based models for their elucidation.  相似文献   

16.
Objectives for Multiple-Species Conservation Planning   总被引:2,自引:0,他引:2  
Abstract:  The first step in conservation planning is to identify objectives. Most stated objectives for conservation, such as to maximize biodiversity outcomes, are too vague to be useful within a decision-making framework. One way to clarify the issue is to define objectives in terms of the risk of extinction for multiple species. Although the assessment of extinction risk for single species is common, few researchers have formulated an objective function that combines the extinction risks of multiple species. We sought to translate the broad goal of maximizing the viability of species into explicit objectives for use in a decision-theoretic approach to conservation planning. We formulated several objective functions based on extinction risk across many species and illustrated the differences between these objectives with simple examples. Each objective function was the mathematical representation of an approach to conservation and emphasized different levels of threat. Our objectives included minimizing the joint probability of one or more extinctions, minimizing the expected number of extinctions, and minimizing the increase in risk of extinction from the best-case scenario. With objective functions based on joint probabilities of extinction across species, any correlations in extinction probabilities had to be known or the resultant decisions were potentially misleading. Additive objectives, such as the expected number of extinctions, did not produce the same anomalies. We demonstrated that the choice of objective function is central to the decision-making process because alternative objective functions can lead to a different ranking of management options. Therefore, decision makers need to think carefully in selecting and defining their conservation goals.  相似文献   

17.
18.
Abstract:  An important aim of conservation biology is to understand how habitat change affects the dynamics and extinction risk of populations. We used matrix models to analyze the effect of habitat degradation on the demography of the declining perennial plant Trifolium montanum in 9 calcareous grasslands in Germany over 4 years and experimentally tested the effect of grassland management. Finite population growth rates (λ) decreased with light competition, measured as leaf-area index above T. montanum plants. At unmanaged sites λ was <1 due to lower recruitment and lower survival and flowering probability of large plants. Nevertheless, in stochastic simulations, extinction of unmanaged populations of 100 flowering plants was delayed for several decades. Clipping as a management technique rapidly increased population growth because of higher survival and flowering probability of large plants in managed than in unmanaged plots. Transition-matrix simulations from these plots indicated grazing or mowing every second year would be sufficient to ensure a growth rate ≥1 if conditions stayed the same. At frequently grazed sites, the finite growth rate was approximately 1 in most populations of T. montanum . In stochastic simulations, the extinction risk of even relatively small grazed populations was low, but about half the extant populations of T. montanum in central Germany are smaller than would be sufficient for a probability of survival of >95% over 100 years. We conclude that habitat change after cessation of management strongly reduces recruitment and survival of established individuals of this perennial plant. Nevertheless, our results suggest extinction processes may take a long time in perennial plants, resulting in an extinction debt. Even if management is frequent, many remnant populations of T. montanum may be at risk because of their small size, but even a slight increase in size could considerably reduce their extinction risk.  相似文献   

19.
Abstract:  Many different systems are used to assess levels of threat faced by species. Prominent ones are those used by the World Conservation Union, NatureServe, and the Florida Game and Freshwater Fish Commission (now the Florida Fish and Wildlife Conservation Commission). These systems assign taxa a threat ranking by assessing their demographic and ecological characteristics. These threat rankings support the legislative protection of species and guide the placement of conservation programs in order of priority. It is not known, however, whether these assessment systems rank species in a similar order. To resolve this issue, we assessed 55 mainly vertebrate taxa with widely differing life histories under each of these systems and determined the rank correlations among them. Moderate, significant positive correlations were seen among the threat rankings provided by the three systems (correlations 0.58–0.69). Further, the threat rankings for taxa obtained using these systems were significantly correlated to their rankings based on predicted probability of extinction within 100 years as determined by population viability analysis (correlations 0.28–0.37). The different categorization systems, then, yield related but not identical threat rankings, and these rankings are associated with predicted extinction risk.  相似文献   

20.
Abstract:  In conservation ecology there is an urgent need for indicators that can be used to predict the risk of extinction of populations. Identifying extinction-prone populations has been difficult because few data sets on the demographic characteristics of the final stage to extinction are available and because of problems in separating out stochastic effects from changes in the expected dynamics. We documented the demographic changes that occurred during the period prior to extinction of a small island population of House Sparrows ( Passer domesticus ) after the end of permanent human settlement. A mark-recapture analysis revealed that this decline to extinction was mainly due to increased mortality after closure of the last farm that resulted in a negative long-term-specific growth rate. No change occurred in either the structural composition (breeding sex ratio and age distribution) of the population or in female recruitment. No male, however, recruits were produced on the island after the farm closure. Based on a simple, stochastic, density-dependent model we constructed a population prediction interval (PPI) to estimate the time to extinction. The 95% PPI slightly overestimated the time to extinction with large uncertainty in predictions, especially due to the influence of demographic stochasticity and parameter drift. Our results strongly emphasize the importance of access to data on temporal variation that can be used to parameterize simple population models that allow estimation of critical parameters for credible prediction of time to extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号