首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Reproduction in the widely distributed tropical sea urchin Echinometra mathaei (de Blainville) was examined in three Kenyan reef lagoons that differed in substrate cover and E. mathaei population density. Histological examination of the gonads and gonad index measurements for 3 years showed a seasonal reproductive cycle with gametogenesis commencing in July, when temperature and light are at their lowest, and spawning commencing in December and peaking in February to May, when temperature and light reach their annual maxima. Monthly gonad indices correlated significantly with seawater temperature and light intensity. Male urchins had mature gametes for a longer period (8 months) than females (6 months), possibly an adaptive strategy that increases the probability of fertilization. Lunar periodicity was not observed, as male and female gonads were full of gametes on all days of the lunar cycle during the period of spawning. The peak in spawning activity coincides with the peak in phytoplankton abundance, which could ensure high food availability for the planktonic larvae. Gonad weights were significantly higher relative to urchin weight at the reef having the largest mean sizes and lowest population of urchins, indicating availability of food resources for growth and reproduction. E. mathaei at the reef with the highest density had the smallest urchins and high relative gonad sizes, indicative of a tradeoff between growth and reproduction when food is limited.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
Like species of sea urchins in Zanzibar and Oregon (USA), Echinometra mathaei (de Blainville) at Rottnest Island, Western Australia, displays variation in the size of Aristotle's lantern relative to the maximum diameter of the test. This variation was associated with local variations in density of urchins at each of two sites in each of two years (1980 and 1981); this association with density was consistent with the proposal that relatively larger lanterns are a response to decreased food availability. Furthermore, variation of relative lantern size associated with local density was similar in magnitude to the variation displayed between sites and between years. This temporal variation demonstrated the plasticity of the relative lantern size over periods as short as 12 mo. Further experimental studies are required before relative length of lanterns can be used as estimates of food availability.  相似文献   

3.
E. Sala 《Marine Biology》1997,129(3):531-539
Direct observations of predation on 436 individuals of the sea urchin Paracentrotus lividus (Lamarck) were carried out in infralittoral rocky bottoms (between 5 and 20 m deep) in three Mediterranean marine reserves. The predator guild was composed of six fish species, the sparids Diplodus sargus and D. vulgaris being the main predators, and the labrid Coris julis a major predator of juvenile sea urchins. Four species attempted but failed to open sea urchins. The scavenger guild was most rich in species, with 17 species observed. Predation was size-dependent; the size of predators increased with increasing size of the sea urchins. The presence of two feeding guilds is suggested, one composed of sparids (Diplodus spp.), able to kill juvenile and adult sea urchins, and the other composed of labrids (mainly C. julis), which feed on juvenile sea urchins. To avoid the extension of overgrazed, barren areas created by P. lividus populations, fisheries' regulations should focus on major sea-urchin predators, chiefly D. sargus, D. vulgaris and C. julis. Received: 23 April 1997 / Accepted: 30 May 1997  相似文献   

4.
Morpho-functional features potentially involved in defence mechanisms against fish predators (i.e. attachment tenacity, spine length, and test robustness and thickness) have been assessed in two Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula. All four morpho-functional features were significantly and positively related to individual size for both species of sea urchins. Test robustness (i.e. static load needed to break sea urchin tests) was significantly greater for A. lixula (from 3,450 to 15,000 g depending on size) than for P. lividus (1,180–11,180 g). Attachment tenacity (i.e. force needed to dislodge sea urchins from the rocky substrate) was greater in A. lixula (280–3,300 g) than in P. lividus (110–1,450 g), and the difference tended to decrease in relation to smaller sea urchin size. Spine length was greater in A. lixula (1.5–2.9 cm) than in P. lividus (0.5–2.3 cm), but the difference decreased for larger sea urchin size. Test thickness was slightly greater (but not significantly) in A. lixula (0.35–1.10 mm) than in P. lividus (0.12–0.90 mm). These results provide evidence that morpho-functional features of sea urchins could be involved in affecting predation rates by fishes upon P. lividus and A. lixula, with potential implications for the population structure and distribution patterns of the two sea urchins in shallow rocky reefs.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

5.
The conditions under which covering (“decorating”, “masking”) takes place have been studied in the sea urchins Paracentrotus lividus, Psammechinus miliaris and 2 other species. Covering occurs equally in darkness or light. It requires suitable objects and locomotion or searching activity of the tube feet. The covering reaction which may follow chemical, mechanical or optical stimuli may be purely the result of an increase in locomotory or general activity. Initial selection of different covering objects depends on the tube feet reflexes; size, form and weight of the object are important. Whether an object is accepted or not, depends on its surface and structure, the amount of water movement and the general activity level of the sea urchin. Transparency and colour of an object do not appear to be important. It is suggested that the covering process can be explained in terms of local tube feet and spine reflexes. The loading-up of objects may be understood as “relative walking”: the same reflexes which move the urchin on stable ground, draw loose particles towards the animal and then upwards.  相似文献   

6.
J. H. Rupp 《Marine Biology》1973,23(3):183-189
Select temperatures, above normal, are shown to reduce success of fertilization and normal early cleavage in the laboratory for the echinoderms Acanthaster planci (L.), Culcita novaeguineae Muller and Troschel, Linckia laevigata (L.), Echinometra mathaei (de Blainville), and Diadema savignyi Michelin. The data indicate that cleavage is more sensitive to increased temperature than is fertilization. Upper tolerance limits for early cleavage in most of the species examined is near 34.0°C. The early developmental stages of A. planci were the most sensitive to elevated temperature, and those of E. mathaei, the least sensitive. Further experiments with E. mathaei showed that unfertilized ova were still viable, dividing normally when fertilized after 2 h exposure at 36.0°C. The ova were significantly less viable after 3 h. Early cleavage stages of E. mathaei were resistant to 36.0°C for exposure times of up to 40 min, but were inhibited beyond this period. It is suggested that the ability of E. mathaei to develop normally at 34.0°C (6C° above ambient temperature) and to withstand limited exposure to 36.0°C may account for the wide distribution of this species in habitats which are often subjected to broad temperature fluctuations, such as reef flats.Contribution No. 46 from the University of Guam Marine Laboratory.  相似文献   

7.
McClintock  J. B.  Vernon  J. D. 《Marine Biology》1990,105(3):491-495
Fifteen species of reproductively mature echinoderms (11 sea stars, 3 sea urchins, 1 sea cucumber) were collected from McMurdo Sound, Antarctica, during austral spring and summer of 1985 and 1986; eggs and embryos were obtained, and were tested for ichthyonoxicity using the common marine killifishFundulus grandis as a model predator. Chemical deterrents occurred in the large, yolky eggs of the pelagic lecithotrophic sea starPerknaster fuscus and the planktotrophic sea starPorania antarctica. Brooded embryos of the sea starsDiplasterias brucei andNotasterias armata were also noxious. Significant ichthyonoxicity was not detected in the remaining 7 species of sea stars, 3 sea urchins, and 1 sea cucumber. Chemical deterrents were generally effective at concentrations below a single egg or embryo per agar test-pellet. Although chemicals found in these eggs and embryos are noxious to an allopatric fish, they may not be noxious to sympatric fish.  相似文献   

8.
Bioerosion is one of the most important structuring forces in coral reef communities. The bioerosion impact of several species of fish, sponges and sea urchins have been estimated in the Caribbean; however, there is no information for one important species, the red sea urchin Echinometra viridis. This species can be found in high densities in many localities. In this study, bioerosion rates for E. viridis were estimated in two patch reefs off La Parguera, southwest Puerto Rico, using the population size-class distribution, average densities, and the CaCO 3 content in fecal pellets produced over 24 h. Average densities of urchins along four depth intervals were estimated using 40-m transect lines and 1-m 2 quadrats. Average size and size-structure distribution were estimated by measuring the diameter of 180–220 urchins haphazardly collected at each of the four depth intervals. The ignition–loss method was used to estimate the daily rate of bioerosion. Fecal pellets produced by the urchins over a 24 h period were collected in buckets, rinsed in fresh water, dried for 24 h at 70°C, and then burned in a furnace at 550°C, first to eliminate organics, and then at 1000°C until constant weight to determine the amount of calcium carbonate (CaCO 3) in the fecal pellets. HCl (10%) was then added to the remainder of the sample to test for presence of CaCO 3. Average individual CaCO 3 bioerosion rates were estimated at 0.181±0.104 g day -1. Average densities (0.77–62.0 ind. m -2), size (2.01–2.44 cm) and average bioerosion rates (0.114–4.14 kg m -2 year -1) were significantly higher in shallow areas (1–3 m) in both reefs. Bioerosion rates were low compared to those reported for parrotfish, endolithic sponges and the black sea urchin D. antillarum, but they were higher than those reported for other small-sized sea urchins in the Caribbean and the Indo-Pacific.  相似文献   

9.
The short-spined toxopneustid sea urchin Tripneustes gratilla feeds on a wide variety of algal species and on sea grasses. However, the urchin does show preferences when offered a selection of macroalgal species, which it encounters in nature. Preferences among macroalgae were evident in field-collected urchins exposed to pair-wise tests where the variable was either the consumption rate of the algae or observation of which algal species the urchins chose to touch with their lantern teeth. Exposure of lab-housed urchins to one of five species of macroalgae for 5 months did not seem to alter preferences of urchins in three of the exposure groups, but those exposed to Padina sanctae-crucis seemed to show an enhanced preference for this species when offered a choice of the five species of macroalgae at the end of the exposure period, and those exposed to Gracilaria salicornia seemed to avoid the species when offered the choice of the five species. Perhaps more ecologically important than their preferences were two other observations on these urchins: first, when offered only a single species of algae, the urchins on four of five diets ate the same quantity per day. Second, when simultaneously offered the choice among the five macroalgal species, the urchins consumed more macroalgae per day than when offered only one species. These urchins move about a meter a day. They probably encounter food resources in a relatively coarse-grained fashion and have evolved to eat what is available. Because of their limited movements, their habitat overlap with grazing fishes, their acceptance of a wide variety of macroalgae and their preference for macroalgae, these native urchins are thought to have the potential to serve as biological control agents of alien and invasive macroalgae, which have come to dominate some reef zones normally occupied by corals in Hawaii.  相似文献   

10.
11.
Abalones and sea urchins in an area inhabited by sea otters   总被引:2,自引:0,他引:2  
Abalones (Haliotis spp.) and sea urchins (Strongylocentrotus spp.) are part of the subtidal fauna in the kelp bed off Hopkins Marine Station, Pacific Grove, California, USA, a protected marine reserve. Although these animals have been preyed upon by sea otters for over 10 years, their densities are gubstantial (Haliotis spp.: 0.21/m2; Strongylocentrotus spp.: 0.22/m2), and two species, H. rufescens (Swainson) and S. purpuratus (Stimpson), have wide size distributions indicating broad age ranges. Most of the adult abalones and sea urchins occur clustered deep in crevices, either as a direct result of sea-otter predation or because ample drift of algal food reduces foraging activities. Abalones tend to occur in larger crevices than sea urchins, and competition for suitable crevice space may exist among these large, invertebrate, algal-drift feeders.  相似文献   

12.
Strongylocentrotus droebachiensis is a well known omnivorous sea urchin with an unrivalled capacity to destroy North Atlantic kelp forests. S. pallidus is a lesser known, morphologically similar, and closely related species with no record of destructive grazing, despite its larger lantern size. I quantify the lantern size of both species using bivariate allometric analysis, and test the hypothesis that enlarged lantern size facilitates durophagy, the consumption of hard prey, by measuring the feeding capacity of urchins with different lantern sizes when offered a hard-shelled prey, the blue mussel, Mytilus edulis. The results suggest that S. droebachiensis has a limited capacity for durophagous feeding irrespective of lantern size, whereas in S. pallidus the ability to exploit hard shelled prey is positively related to lantern size. This is apparently the first evidence of a relationship between trophic morphology and diet in regular sea urchins. The hypothesis of systematic latitudinal variation in the lantern size of S. pallidus is reappraised and rejected. S. droebachiensis had larger gonads than S. pallidus in field samples, confirming that its small lantern is not impeding nutrient acquisition in shallow habitats.  相似文献   

13.
During the day, the diadematid sea urchin Centrostephanus coronatus occupies holes and crevices in shallow subtidal rocky substrata. Individuals emerge from these after sunset and forage on organisms attached to the surrounding rock surface. Each urchin travels <1 m from its shelter and returns to the same one before sunrise. The sheephead wrasse Pimelometopon pulchrum does not remove urchins from their shelters, but will attack and consume urchins placed in normal feeding locations during the daytime. The active periods of the sheephead and the urchin do not overlap; urchins begin foraging about 20 min after the diurnal sheephead retire in the evening and return to their shelters 1 to 2 h before sheephead resume feeding in the morning. We infer that the urchin's daytime crevice-dwelling and nocturnal foraging habits have evolved as a response to sheephead predation. Moreover, because shelters are limited in supply, shelter fidelity may have evolved to insure refuge from sheephead.  相似文献   

14.
Large populations of sea urchins, Strongylocentrotus droebachiensis (Müller), destroyed kelp beds along the Atlantic coast of Nova Scotia in the 1960's and 1970's. The origin of these large sea urchin populations is not understood. We have investigated the potential influence of variable growth and development of the planktonic larvae of sea urchins (in response to temperature and food abundance) on recruitment of benthic juveniles. The adult sea urchins were collected at Sandy Cove, Digby County, Nova Scotia, Canada, in December 1986. Temperature strongly affected larval size and the growth of the echinus rudiment within the range 3° to 9°C, and larvae grew most rapidly at 14°C. Food abundance had a smaller effect on larval growth, and these effects were apparent only at high temperature. Larvae fed the same concentration of two different algal food species grew and developed similarly. Correspondence between spring temperature variation and qualitative variation in sea urchin recruitment, as well as strong temperature effects on larval growth in culture, and the occurrence of a large, positive temperature anomaly in June 1960, all suggest that temperature effects on larval growth and development may have led to intense sea urchin recruitment in 1960 and the appearance of large adult populations 4 to 6 yr later. This result invites further research.  相似文献   

15.
Growth in the deep-sea irregular sea urchins Echinosigra phiale (family Pourtalesiidae) and Hemiaster expergitus (family Hemiasteridae) was studied from deep-sea samples taken during the years 1973 to 1985 from two stations at 2900 and 2200 m depth in the Rockall Trough (N.E. Atlantic Ocean). Growth zones, similar to those described from sea urchins in shallow water, are present as a series of wide white bands separated by narrow, dark rings in the calcite stereom of the test plates after heating to 350°C. In shallow water, such growth zones seem to result from seasonally varying growth rates. In the supposedly constant conditions in the deep sea, a seasonal growth pattern is unexpected but may occur in response to recently discovered annual pulses in downward flux of detritus from the euphotic zone, providing a seasonally varying food supply for such deposit-feeding species living in the bottom sediment. On this assumption, growth curves were fitted to counts of growth zones (as representing age in years), in the larger lateral and ventral test plates of E. phiale and H. expergitus. The opportunity was also taken to fit growth curves derived from counts of growth zones in samples of the inshore spatangoids Spatangus purpureus and Echinocardium pennatifidum. Plots of counts against test length of Echinosigra phiale and H. expergitus, although scattered and not clearly asymptotic, indicate, growth to be slower than in the two inshore spatangoids, and than in the coastal species Echinocardium cordatum, for which there are good recent growth data, available.  相似文献   

16.
We studied the effects of grazing by two species of sea urchins on two species of kelp (Macrocystis pyrifera and Pterygophora californica) in the San Onofre kelp bed in southern California from 1978 through 1981. Both red sea urchins, Strongylocentrotus franciscanus, and white sea urchins, Lytechinus anamesus, were abundant and lived in aggregations. The purple sea urchin (S. purpuratus) was rare at the study site and was not studied. The aggregations of red urchins were either relatively small and stationary (for over 3 yr) or relatively large and motile (advancing at about 2 m mo–1). Both stationary and moving aggregations were observed at the same time, and within 100 m of one another. Stationary aggregations of red urchins probably subsisted mainly on drift kelp and had no effect on kelp recruitment or on adult kelp abundance. In contrast, red sea urchins in large, motile aggregations or fronts ate almost all the macroalgae in their path. The condition of their gonalds indicated that red urchins in fronts were starved relative to red urchins in the small, stationary aggregations. Large, motile aggregations developed after 2 yr of declining kelp abundance (probably due largely to storms). We propose that a scarcity of drift algae for food results in a change in the behavior pattern of the red urchins and thus leads to the formation of large, motile aggregations. The aggregations of white urchins, which occurred along the offshore margin of the kelp bed, were large, but relatively stationary. The white urchins rarely ate adult kelps, but grazed extensively on early developmental stages of kelps and evidently prevented seaward expansion of the bed. The spatial distribution of both types of red urchin aggregations appeared to be unrelated to predation pressure from fishes or lobsters.Please address all requests for reprints to the senior author at his present address.  相似文献   

17.
Gut analyses of the green sea urchin Strongylocentrotus droebachiensis (O. F. Müller) demonstrated that perennial phaeophytes, mostly fucoids and Alaria esculenta, were predominant in the diet. Ephemeral species, coralline algae and animals, were consumed in smaller amounts when available. Grazing by the urchins is evidently responsible for the dearth of non-coralline sublittoral algae in Newfoundland waters. Lobsters, rock crabs, purple sea stars, other urchins, and a variety of fishes and birds feed on S. droebachiensis, but predation is apparently not effective in limiting the abundance of the urchin.Studies in Biology from the Memorial University of Newfoundland No. 234.Contribution from the Marine Sciences Research Laboratory No. 66.  相似文献   

18.
Regular sea urchins show pentaradial symmetry: they have round bodies made of five almost identical sectors. There is no preference in which sector should be anterior in their locomotion. Anthocidaris crassispina is exceptional among regular sea urchins. Morphometry showed that their tests had radial symmetry but the overall body shape showed bilateral symmetry because of the uneven distribution of spine length. This bilateral axis did not correspond to the ambulacrum III—interambulacrum 5 axis, which is the bilateral axis of irregular sea urchins. Their behavior in relation to this bilaterality was observed in the aquarium. At rest, most of them stayed in the upper corner of the aquarium keeping the sector with the shortest spine length (the shortest sector) toward the water surface. At walking, most of them moved on the vertical wall just under the water surface keeping the shortest sector directing to the water surface. When they walked in the open space, they moved in a random direction with respect to the bilaterality of the spines. The bilaterality and the behavior of this sea urchin were interpreted as the adaptation to defense not to efficient locomotion.  相似文献   

19.
Defensive aggregation by Strongylocentrotus droebachiensis has been invoked as the fulcrum for the transformation of macroalgal beds into coralline barrens in the northwest Atlantic. We critically examined some of the mechanisms contributing to aggregation behavior by experimentally manipulating sea urchins, purported predators and food during autumn 1983 and spring 1984 both in the laboratory and field. We utilized several approaches to examine a range of sea urchin responses to the presence of food, tethered predators, caged predators, crushed con-specifics in the field and predators in laboratory tanks. Some of the field cages had the property of allowing free passage to sea urchins while retaining lobsters; this allowed distinctions to be made between artifacts caused by cage walls or topographic barriers and unrestricted behavioral responses of sea urchins. The results falsified the hypothesis that aggregations of S. droebachiensis are elicited by predators. Except in the presence of algae, sea urchins always avoided decapod predators (but not sea stars) and fled from the vicinity of injured conspecifics. However, avoidance behavior was subordinate to feeding responses, demonstrated by mass migrations of sea urchins into cages (with lobsters) to feed on algae. We reaffirmed by observation and manipulation previous studies which showed that sea urchins aggregate only in the presence of food. Two types of sea urchin groupings were delineated: (1) surficial two dimensional associations, often caused by topographic or other features which inhibited dispersal and (2) cohesive three-dimensional aggregations induced by food.  相似文献   

20.
K. Mori 《Marine Biology》1979,51(4):361-369
The morphology of the primary tube feet in 15 species of comatulid (unstalked) crinoids from coral reefs in the Palau Islands and Lizard Island, Great Barrier Reef, was investigated using close-up underwater photographs of the tube feet taken in the natural habitat. Measurements of length of the tube feet and their spacing along the pinnule were taken from these photographs. Tube feet of species of the family Comasteridae have a mean length of 0.75 mm and a mean spacing of 6 tube feet mm-1. Tube feet of non-comasterid species occurring in the same environments have a mean length of 0.55 mm and a mean spacing of about 8 tube feet mm-1. The relationship between spacing and length of the tube feet is highty significant for both the Palau and Lizard Island samples (P<0.01). Species having longer and more widely spaced tube feet live partly concealed within the infrastructure of the reef and hold the arms and pinnules in a multidirectional posture. Species having shorter and more closely spaced tube feet perch on top of reef pinnacles or alcyonarians and form planar filtration fans normal to unidirectional currents or wave oscillations. Longer and more widely spaced tube feet in species dwelling within the reef infrastructure provide more efficient filtration in the slow, meandering flow prevailing there. Closer spacing of the tube feet in species exposed to near-mainstream flow provides a more efficient filtration mechanism at higher flow velocities. Reduced length of the tube feet in these species may be a consequence of closer spacing of the pinnules. Differentiation of these co-occurring species in spacing and length of the tube feet implies differentiation in food particles captured. This may in some cases constitute resource partitioning. Most species which overlap in living habits are significantly different in spacing and length of the tube feet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号