首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The main goal of this work was to analyze the impact of biochar addition and changes in air-flow rates on the intensive phase of aerobic biostabilization of undersized fraction of municipal solid waste (UFMSW). The novelty of this paper stems from the use of biochar to shorten the process and generate “well-stabilized waste”. The following six different input mixtures were tested (without biochar and with the addition of biochar at: 1.5%, 3%, 5%, 10% and 20%), at three different air-flow rates: 0.1, 0.2 and 0.4 m3·d−1·(kg org DM)−1. It was found that the biochar addition of more than 3 wt% causes water accumulation in the treated waste, but does not allow for reducing organic matter (OM) content below 35% DM, nor OMloss values below 40% (the exception is the 5 wt% addition of biochar at the air-flow rate of 0.2 m3·d−1·(kg org DM)−1). Moreover, 10 wt% and 20 wt% biochar additions to UFMSW intensify the increase in microbial abundance, which may result in higher oxygen demand or development of anaerobic zones. The most favorable biochar doses in terms of final UFMSW sanitization are 3 wt% and 5 wt%.

  相似文献   

2.
纯碱生产废水的综合治理   总被引:4,自引:0,他引:4  
杨守荣 《化工环保》2000,20(1):19-21
介绍了纯碱生产过程中产生的蒸氨废清液和生产下水的综合治理情况。将废清液晒盐回收NaCl,然后从母液中回收CaCl2。在雨季等情况下对废清液的治理措施是,将其两次兑海水,使其各项指标达到国家排放标准。  相似文献   

3.
重金属废水处理与资源化利用现状   总被引:1,自引:0,他引:1  
重金属废水的排放是重金属污染的重要源头之一。介绍了目前国内外用于处理不同重坌属废水的方法,以及重金属废水资源化可采用的多种工艺。在重金属废水资源化技术中,膜分离技术起着十分重要的作用。  相似文献   

4.
味精废水产生量大,平均生产1t100%味精,会产生10~12 t味精废水,废水中含有大量的有机物,处理费用较高,味精行业负担较重,直接排放会造成资源的浪费,同时也会造成水体污染,所以实现味精废水资源化利用是缓解味精行业经济压力的有效途径.根据目前中国味精废水资源化利用研究现状,从废物资源化利用角度进行了归纳和总结.并以味精行业为主导,通过横向延伸产业链、纵向耦合共生,提出建立味精废水资源化网络的方法.  相似文献   

5.
Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment – especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a “best-practice-scenario” for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand.  相似文献   

6.
In our previous work, the primary sludge from wastewater treatment plants was shown to contain a considerable amount of cellulose (about 20%, based on suspended solids) owing to the discharge of toilet paper. For the purpose of using the cellulose as a biomass resource, this study examined a simple method for its recovery. When fibrous cellulose was suspended in 0.3% sulfuric acid and autoclaved at 130°C for 60 min, 85%–88% of the initial solids remained without dissolving. Under these conditions, an activated sludge sample not containing cellulose was strongly hydrolyzed and only 7% of the initial solids remained. The prescribed amounts of cellulose added to the activated sludge sample were quantitatively recovered by the autoclaving treatment. In the treatment of primary sludge containing >20% cellulose, residual solids with relatively high levels of cellulose (>69%) could be obtained. The results indicate that the method proposed here could recover cellulose practically from waste sewage sludge for biomass utilization. Received: July 17, 2000 / Accepted: July 4, 2001  相似文献   

7.
Chitosan is a natural high molecular polymer made from crab, shrimp and lobster shells. When used as coagulant in water treatment, not like aluminum and synthetic polymers, chitosan has no harmful effect on human health, and the disposal of waste from seafood processing industry can also be solved. In this study the wastewater from the system of cleaning in place (CIP) containing high content of fat and protein was coagulated using chitosan, and the fat and the protein can be recycled. Chitosan is a natural material, the sludge cake from the coagulation after dehydrated could be used directly as feed supplement, therefore not only saving the spent on waste disposal but also recycling useful material. The result shows that the optimal result was reached under the condition of pH 7 with the coagulant dosage of 25 mg/l. The analysis of cost-effective shows that no extra cost to use chitosan as coagulant in the wastewater treatment, and it is an expanded application for chitosan.  相似文献   

8.
Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures--gasification, gas cleaning and electric and thermal power generation--are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes.  相似文献   

9.
电石渣-铁屑法去除硫酸废水中的氟和砷   总被引:11,自引:0,他引:11  
对各种处理含氟、砷废水的方法进行了探讨,选择了以电石渣和废铁屑为药剂去除硫酸废水中氟和砷的方法,取得了较好的效果。该法以废治废、工艺简便、运行费用低,处理后的废水可达排放标准。  相似文献   

10.
以河南省某制革企业综合有机废水处理工程为实例,根据排放废水的水质水量及处理要求进行工程分析,对含铬废水的处理提出工艺流程;对综合有机废水处理工艺各构筑物的功能和设计进行了详细阐述.  相似文献   

11.
Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25% m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the 1H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations.  相似文献   

12.
The results presented in this paper are part of a project aimed at designing an original solution for the treatment of used disposable diapers permitting the recycling of materials and the recovery of energy. Diapers must be collected separately at source and transported to an industrial facility to undergo special treatment which makes it possible to separate plastics and to recover a biodegradable fraction (BFD) made up mainly of cellulose. The methane yield of BFD was measured and found to be 280 ml CH4/g VSfed on average. 150 kg of dry BFD can be retrieved from the treatment of one ton of used disposable diapers, representing an energy potential of about 400 kW h of total energy or 130 kW h of electricity. As the treatment process for used diapers requires very high volumes of water, the setting up of the diaper treatment facility at a wastewater treatment plant already equipped with an anaerobic digester offers the advantages of optimizing water use as well as its further treatment and, also, the anaerobic digestion of BFD. The lab-scale experiments in a SBR showed that BFD co-digestion with sewage sludge (38% BFD and 62% waste activated sludge on volatile solids basis) was feasible. However, special attention should be paid to problems that might arise from the addition of BFD to a digester treating WAS such as insufficient mixing or floating particles leading to the accumulation of untreated solids in the digester.  相似文献   

13.
Agricultural wastes such as lignocellulosic residues are renewable resources can be used for mushroom cultivation. Spent mushroom substrate (SMS) is defined as leftover of biomass generated by commercial mushroom industries after harvesting period of mushroom. Mushroom cultivation using agricultural wastes promises a good quality of SMS for producing beneficial products such as animal feeding and fertilizers. Based on the published papers, the major applications of SMS are animal feedstock, fertilizer, energy production and wastewater treatment. For instance, some species of mushroom such as Pleurotus spp. and Agaricus bisporus are suitable for applications of ruminant feedstock and fertilizers. This paper reviews the recent studies about the beneficial usage of SMS which is considered as a waste since 2013.  相似文献   

14.
Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles – consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.  相似文献   

15.
Resource recovery treatment of waste sludge using a solubilizing reagent   总被引:2,自引:0,他引:2  
The dewatering of waste sludge continues to be a major problem in wastewater treatment. In this study, the solubilization treatment of waste sludge and extracellular polymeric substances using a solubilizing reagent was examined experimentally. For this purpose, a compression test of thickened waste sludge obtained after solubilization treatment was carried out. The total solid content of the dewatered cake was over 30% when using hydrochloric acid or acetic acid as the solubilizing reagent; however, it was about 20% when using sodium hydroxide. The thickened waste sludge was effectively solubilized when the concentration of acetic acid in the sludge, assuming that it was diluted by free water and not bound water in the sludge, was greater than 0.3 kmol/m3. A flocculated sedimentation test using the supernatant water after solubilization treatment was also carried out, revealing that it functions in a similar manner to commercial flocculant in aggregating solid particles under gravity. This result indicates that the supernatant water can act as a bioflocculant. Methane fermentation of the supernatant water was subsequently carried out. The findings showed that by using acetic acid as a solubilizing reagent, solubilized organic substances in the supernatant water could be recovered as a bioenergy resource.  相似文献   

16.

To create a truly circular economy requires a shift from the traditional view of waste disposal to one of resource management. This is particularly important in developing countries, where municipal waste generation is increasing, and efficient recovery of economic value from waste is rarely achieved. Conducted in the University of Lagos (UoL), Nigeria, this study investigated the efficiency of a recycling scheme with the goal of making recommendations to improve the process. UoL’s recycling policy centers around source segregation of waste into color-coded bins. Waste audit was carried out using the output method and interviews were conducted with staff from the waste management team to understand practices on campus. Substantial contamination of colored bins with non-target material was observed. Organics (30%), mixed plastics (28%) and paper (24%) were the most abundant materials, hence have the greatest potential for recovery, and income generation, if segregation rates could be improved. Despite its recycling policy and infrastructure, 99% of UoL waste was going to landfill. Poor policy implementation results in low recovery rates. Targeted waste reduction and increased material recovery would enhance efficiency. Improved awareness of recycling benefits, in addition to policy enforcement, could serve as tools to increase stakeholder participation in recycling.

  相似文献   

17.
In Iran most of the electricity is generated by thermal power plants. As a result of fuel oil burning in winter time, the air heaters of the boilers have to be washed and cleaned frequently. The wastewater originating from air heater washing is then treated in an effluent treatment plant by chemical precipitation followed by dewatering of the sludge produced. The resulting waste is classified as specific industrial waste that should be characterized in detail under the Waste Management Act of Iran. The quantity of this waste produced in the studied power plant is about 20 tonnes year(-1). In the present investigation, the first to be carried out in Iran, seven composite samples of dewatered sludge from air heater washing wastewater treatment were subjected to investigation of the physical properties, chemical composition and leaching properties. The most likely pollutants that were of concern in this study were heavy and other hazardous metals (Cd, Co, Cr, Mn, Ni, Pb, Zn and V). The results revealed that mean pH, wet and dry density and moisture content of the waste were 6.31, 1532 kg m(-30, 1879 kg m(-3) and 15.35%, respectively. Magnetite, SiO2, P2O5, CaO, Al2O3 and MgO were the main constituents of the waste with a weight percentage order of 68.88, 5.91, 3.39, 2.64, 2.59 and 1.76%, respectively. The toxicity characteristic leaching procedure test results for some heavy and other hazardous metals showed that mean elemental concentrations of Cd, Co, Cr, Mn, Ni, Pb, V and Zn in leachate were 0.06, 1.55, 5.49, 36.32, 209.10, 0.58, 314.06 and 24.84 mg L(-1), respectively. According to the Waste Management Act of Iran this waste should be classified as hazardous and should be disposed of in accordance with hazardous waste disposal regulations.  相似文献   

18.
In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.  相似文献   

19.
This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.  相似文献   

20.
张巍 《化工环保》2018,38(3):267-274
论述了膨润土的吸附机理,介绍了膨润土的物理及化学改性方法及其对有机染料废水,焦化废水,烟草废水,煤泥水,含酚类、石油烃类、抗生素废水及微污染水等的处理效果。针对膨润土作为环保吸附剂存在的问题指出了今后的研究方向:1)将研究成果应用于实际废水;2)研究环境友好且效果好的改性工艺及材料;3)研究新的吸附剂制备形式;4)加大膨润土在废气处理上的研究力度;5)研制吸附效果更佳且能处理复杂成分污水的新型复合吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号