首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous magnesium oxide (MgO) was synthesized using mesoporous carbon CMK-3 obtained from mesoporous SBA-15 as exotemplate. P123 was used as the structure-directing template and rice husk ash (RHA) as the silica source for the synthesis of SBA-15, which was subsequently treated with sucrose and sulphuric acid to obtain mesoporous carbon (CMK-3). X-ray powder diffraction (XRD) results and the type-IV adsorption isotherm with H1 hysteresis obtained by N2 adsorption/desorption study for SBA-15, CMK-3 and mesoporous MgO suggests its resemblance with materials synthesized using conventional silica sources. Mesoporous MgO was subjected for CO2 adsorption study in TGA; adsorption was 8 and 10 wt% at 25 and 100 °C, respectively. Finally, mesoporous MgO is selective to CO2 gas, thermally stable and regenerable. Thus, this study contributes a better route to enhance CO2 gas adsorption and use ecological waste rice husk for the synthesis of such efficient mesoporous materials.  相似文献   

2.
ABSTRACT: An investigation of treated municipal wastewaters discharged into Texas streams was conducted to determine the probable effect of concentrations of ammonia in receiving waters, based on existing data on ammonia levels which are lethal to various species of fish. Recorded data for most Texas cities were analyzed. Based on existing toxicity criteria for ammonia of 1/10 TLm= 0.31 mg/1 NH3-N, employing known discharge flow rates, and 7-day, 5-year or 7-day, 10-year low flows in Texas streams, appreciable numbers of sites were found to pose a threat to various species of fish. Using the bluegill (Lepomis macrochirus) as a median tolerance limit species, data from 65 cities which met the aforecited requirements, were analyzed. Those included a total of 92 wastewater effluents. Sixty-nine percent of those cities and 70% of their effluents exceeded the 0.31 mg/1 NH3-N limit in the stream below the discharge point. Thirty-seven percent of the cities equaled or exceeded the 96-hour TLm concentration limit of 3.1 mg/1 ammonia. Based on the 10 mg/1 NO3-N standard for intake water for potable supplies, 32% of the effluents resulted in a stream concentration which exceeded 10 mg/1, assuming a straight conversion of NH3-N to NO3-N.  相似文献   

3.
In this study, the photocatalytic activity of TiO2 nanofibers toward ammonia borane hydrolysis has been strongly modified by doping the nanostructure by ZnO and Fe2O3 oxides. Due to the differences in the work function and band gap energy among the three semiconductors (TiO2, ZnO and Fe2O3), illumination of TiO2 leads to accumulate the electrons and holes on the conduction and valance bands of Fe2O3 and ZnO, respectively. Accordingly, the experimental results indicated that the surface of the obtained nanofibers is very active which results in an instant hydrolysis of ammonia borane molecules reaching the active zone surrounding the nanofibers. Moreover, negative activation energy was determined as increasing the temperature led to decrease the photocatalytic performance. Furthermore, kinetic studies indicated that the heterogeneous catalytic reaction describing the ammonia borane hydrolysis process is zero order which additionally supports the super activity of the introduced nanofibers. It was also observed that Fe2O3 content in the introduced nanofibers has distinct influence as the best performance was obtained at 1 wt%. The modified TiO2 nanofibers were prepared by calcination of electrospun nanofibers composed of titanium isopropoxide, zinc acetate and iron acetate in air at 700 °C for 1 h. Overall, the present study opens a new avenue to overcome the fast electrons/holes recombination dilemma facing TiO2-based nanostructures.  相似文献   

4.
In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304 K for 1 to 10 wt% aqueous ammonia with loadings varying from 0 to 0.8 mol CO2/mol NH3. The absorption rate in 30 wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314 K with loadings varying from 0 to 0.4 as comparison.It was found that at 304 K, the rate of absorption of carbon dioxide by 10 wt% NH3 solvent was comparable to the rates for 30 wt% MEA at 294 and 314 K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294 K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency.The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.  相似文献   

5.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   

6.
A reaction calorimeter was used to determine the enthalpies of absorption of CO2 in aqueous ammonia and in aqueous solutions of ammonium carbonate at temperatures of 35–80 °C. The heat of absorption of CO2 with 2.5 wt% aqueous ammonia solution was found to be about 70 kJ/mol CO2, which is lower than that with MEA (around 85 kJ/mol) at 35 and 40 °C. The value decreases with increased loading, but not to as low a value as expected by the carbonate–bicarbonate reaction (26.88 kJ/mol). The enthalpy of absorption of CO2 in aqueous ammonia at 60 and 80 °C decreases with loadings at first, then increases between 0.2 mol CO2/mol NH3 and 0.6 mol CO2/mol NH3, and then decreases again. The behavior of the heat of absorption of CO2 in 10 wt% ammonium carbonate solution was found to be the same as that of aqueous ammonia at loadings above 0.6 mol CO2/mol NH3. The heat of absorption increases with increasing temperature. The heats of absorption are directly related to the extent of the various reactions with CO2 and can be assessed from the species variation in the liquid phase.  相似文献   

7.
Biodiesel produced by transesterification of waste animal oil is a promising green fuel in the future. ZnO-Al2O3 and ZnO/Zn2Al composition oxides were prepared by co-precipitation method and impregnation method, respectively. The above catalysts were characterized by X-ray diffraction (XRD), Brunauer--Emmett--Teller (BET) and CO2 adsorption and temperature-programmed desorption (CO2-TPD) and show that the high activity for the catalyst is attributed to its high alkalinity. The reaction parameters were optimized and the results show that the transesterification ratio of waste animal oil can reach 98.7% with 10% ZnO/Zn2Al catalyst after 2 h. Moreover, 10%ZnO/Zn2Al compound oxides can be active for the successive cycles. The glycerol as a predominant by-product after transesterification is of high purity with high use value.  相似文献   

8.
Hydrotalcite-based materials have been identified as suitable materials for high temperature (400 °C) adsorption of CO2. In pre-combustion decarbonisation processes for natural gas based power cycles, it should be possible to use this material to improve conversions in the water-gas shift (WGS) and steam-reforming (SMR) reaction. The efficiencies for electricity production from natural gas have been calculated for some different system configurations, in which hydrotalcite-based material could be used. The calculated efficiency penalties ranged from 5.5 to 8.6 percentage points. The assumptions made in the system study have been tested on the laboratory scale. Hydrotalcite-based materials are found to be an excellent choice for use in the sorption-enhanced WGS reactor. The requirements for very low residual concentrations of CO2 at 400 °C and large amounts of catalyst in the sorption-enhanced SMR reactor make its application less likely. Suggestions are made to how the SE-SMR could be improved.  相似文献   

9.
A novel process for a simultaneous removal of ammonia and organics was developed on the basis of ion exchange and biological reactions. From batch experiments, it was found out that NH4+ could be removed effectively by combining cation exchange and biological nitrification showing 0.98 mg N/m2?s of a maximum flux. On the other hand, the removal of NO3 was 3.5 times faster than NH4+ and the maximum flux was calculated to be 3.4 mg N/m2?s. The systems for NH4+ and NO3 removal were combined for establishing the IEBR process. When the process was operated in a continuous mode, approximately 95.8% of NH4+ was removed showing an average flux of 0.22 mg N/m2·s. The removal efficiency of total nitrogen was calculated as 94.5% whereas that of organics was 99.5%. It was concluded that the IEBR process would be effectively used for a simultaneous removal of NH4+ and organics.  相似文献   

10.
Surface modification of biomass-based carbon with nitrogen-containing functional groups is performed by the different modification method, including the thermal and chemical methods. We also investigate the effect of the different reaction parameters on their pore structure using the Brunauer–Emmett–Teller surface area and adsorption performance based on methylene blue value. Fourier transforms infrared spectroscopy methods are performed to confirm the presence of N-containing groups. Based on above results, the comparison effect of different modification methods on physico-chemical propriety and adsorption properties of biomass-based carbon materials are carried out. In conclusion, all modification methods could enhance CO2 adsorption capability. However, the carbon materials treated with ammonia using thermal method show the best performance.  相似文献   

11.
Fe2O3-containing waste materials from the steel industry are proposed as oxygen carrier for chemical-looping combustion. Three such materials, red iron oxide, brown iron oxide and iron oxide scales, have been examined by oxidation and reduction experiments in a batch fluidized-bed reactor at temperatures between 800 and 950 °C. NiO-based particles have been used as additive, in order to examine if it is possible to utilize the catalytic properties of metallic Ni to facilitate decomposition of hydrocarbons into more reactive combustion intermediates such as CO and H2. The experiments indicated modest reactivity between the waste materials and CH4, which was used as reducing gas. Adding small amounts of NiO-based particles to the sample increased the yield of CO2 in a standard experiment, typically by a factor of 1.5–3.5. The fraction of unconverted fuel typically was reduced by 70–90%. The conversion of CH4 to CO2 was 94% at best, corresponding to a combustion efficiency of 96%. This was achieved using a bed mass corresponding to 57 kg oxygen carrier per MW fuel, of which only 5 wt% was NiO-based synthetic particles. The different materials fared differently well during the experiments. Red iron oxide was fairly stable, while brown iron oxide was soft and subject to considerable erosion. Iron oxide scales experienced increased reactivity and porosity as function of the numbers of reduction cycles.  相似文献   

12.
Pd-based membranes have been studied for pure hydrogen separation from syngas: in particular, a mathematical model of a Pd membrane for hydrogen separation has been developed.This model can be used in process and assessment studies of the parameters which characterize the mass transfer phenomena (such as: hydrogen permeability, surface coverage and limiting step). By coupling the permeation and water gas shift reaction kinetics, it can also be used to evaluate the performances of the membrane reactor. Further, it can be helpful to evaluate the best assembly and sizing of a H2/CO2 separation system.The model takes into account the kinetics of H2 adsorption/desorption on Pd surface, the H2 permeation into the palladium bulk and in the porous layer, and the kinetics of CO, CO2, H2O, O2, H2S competitive adsorption/desorption on Pd surface. It is also comprehensive of flux equations and bulk mass, momentum and energy balance.The results released by the model were compared to the experimental data during both the transient phase and the steady state conditions. A satisfactory agreement between model and experimental data was found.  相似文献   

13.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

14.
As part of a collaborative effort operated by the Zero Emission Research and Technology Center (ZERT), a series of two shallow releases of CO2 was performed at a test site in Bozeman, MT. The purpose of the experiment was to simulate possible leakage scenarios from a carbon capture and storage operation in order to further develop and verify monitoring technologies used to characterize and quantify the release of CO2. The project included collaboration with several research groups and organizations. Presented here are the results of soil–gas monitoring conducted by researchers from the National Energy Technology Laboratory, including CO2 flux measurement, soil–gas analysis, perfluorocarbon tracer monitoring, and soil resistivity measurements. Together, these methods proved to be effective in detecting and characterizing leakage in the near-surface.  相似文献   

15.
ABSTRACT: A variety of management options are used to minimize losses of nitrogen (N), phosphorus (P), and other potential pollutants from agricultural source areas. There is little information available, however, to indicate the effectiveness of these options (sometimes referred to as Best Management Practices, or BMPs) on basin scales. The objective of this study was to assess the water quality effectiveness of BMPs implemented in the 3240 ha Lincoln Lake basin in Northwest Arkansas. Land use in the basin was primarily forest (34 percent) and pasture (56 percent), with much of the pasture being regularly treated with animal manures. The BMPs were oriented toward minimizing the impact of confined animal operations in the basin and included nutrient management, dead bird composter construction, and other practices. Stream flow samples (representing primarily base flow conditions) were collected bi-weekly from five sites within the basin from September 1991 through April 1994 and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), and total suspended solids (TSS). Mean concentrations of PO4-P, TP, and TSS were highest for subbasins with the highest proportions of pasture land use. Concentrations of NH3-N, TKN, and COD decreased significantly with time (35–75 percent/year) for all sub-basins, while concentrations of other parameters were generally stable. The declines in analysis parameter concentrations are attributed to the implementation of BMPs in the basin since (a) the results are consistent with what would be expected for the particular BMPs implemented and (b) no other known activities in the basin would have caused the declines in analysis parameter concentrations.  相似文献   

16.
In this work, Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites were prepared by the ultrasonic dispersion and liquid boiling method. In succession, they were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Acid red B as a model dye compound was degraded under solar light irradiation to evaluate the photocatalytic activities of the Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites. We found that the photocatalytic activity of ZnO–TiO2 composite can be enhanced by adding an appropriate amount of Er3+:YAlO3. We reviewed influencing factors, such as Er3+:YAlO3 content, heat-treated temperature and heat-treated time on the photocatalytic activity of the Er3+:YAlO3/ZnO–TiO2 composites. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+:YAlO3/ZnO–TiO2 amount and solution acidity on the photocatalytic degradation of acid red B dye in aqueous solution were investigated in detail. Simultaneously, the degradation and comparison of other dyes such as methyl orange (MO), rhodamine B (RM-B), azo fuchsine (AF), congo red (CG-R) and methyl blue (MB) were also reviewed. In addition, we attempted to explore both the principle of possible excitation of Er3+:YAlO3/ZnO–TiO2 under solar light irradiation and the mechanism of photocatalytic degradation.  相似文献   

17.
The kinetics of CO2 absorption in unloaded aqueous ammonia solution were measured using a string of discs contactor with the aqueous ammonia concentrations ranging 0.9–5.4 kmol/m3 and temperatures ranging 298.3–321.9 K. The reaction rates strongly increase with the concentration and less strongly with temperature. Both the termolecular and zwitterion models were applied in this study as amine solutions. The parameters for both of the models were interpreted. The kinetic rate constants for CO2 absorption in aqueous ammonia were compared with those for other amines and were found to be around 1/10 that for monoethanolamine. The fitting results for the termolecular mechanism seem more robust than those for the zwitterion mechanism from a statistical perspective.  相似文献   

18.
Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10?cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH4 +-N and NO3 ?-N. However, soil IN pools were dominated by NH4 +-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH4 +-N concentration and decreases NO3 ?-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH4 +-N and NO3 ?-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH4 +-N and NO3 ?-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH4 +-N were measured at the upper slopes of all sites, but NO3 ?-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH4 +-N and NO3 ?-N concentrations. Options for improved soil management in plantations are discussed.  相似文献   

19.
Chemical-looping combustion (CLC) is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. The technique involves the use of an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. A chemical-looping combustion system consists of a fuel reactor and an air reactor. A metal oxide is used as oxygen carrier that circulates between the two reactors. The air reactor is a high velocity fluidized bed where the oxygen carrier particles are transported together with the air stream to the top of the air reactor, where they are then transferred to the fuel reactor using a cyclone. The fuel reactor is a bubbling fluidized bed reactor where oxygen carrier particles react with hydrocarbon fuel and get reduced. The reduced oxygen carrier particles are transported back to the air reactor where they react with oxygen in the air and are oxidized back to metal oxide. The exhaust from the fuel reactor mainly consists of CO2 and water vapor. After condensation of the water in the exit gas from the fuel reactor, the remaining CO2 gas is compressed and cooled to yield liquid CO2, which can be disposed of in various ways.With the improvement of numerical methods and more advanced hardware technology, the time needed to run CFD (Computational fluid dynamics) codes is decreasing. Hence multiphase CFD-based models for dealing with complex gas-solid hydrodynamics and chemical reactions are becoming more accessible. Until now there were a few literatures about mathematical modeling of chemical-looping combustion using CFD approach. In this work, the reaction kinetics model of the fuel reactor (CaSO4 + H2) was developed by means of the commercial code FLUENT. The bubble formation and the relation between bubble formation and molar fraction of products in gas phase were well captured by CFD simulation. Computational results from the simulation also showed low fuel conversion rate. The conversion of H2 was about 34% partially due to fast, large bubbles rising through the reactor, low bed temperature and large particles diameter.  相似文献   

20.
Separation of water for reuse is essential in an effluent treatment system, especially in activities with high water consumption, such as a pig production system. The objective of this work was to evaluate the efficiency of Tanfloc SG® coagulant tannin/organic flocculant used to treat effluent generated during the intensive rearing of swine. For the evaluation, laboratory and in situ tests (field test) were performed. The laboratory tests were performed to define the concentration (1 and 16%), dosage (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 milliliters of the solution), and time (24, 48, 72, and 96 hours) of coagulation/flocculation treatment of the solid portion of the effluent. The parameters pH, turbidity, oxidation reduction potential, dissolved oxygen, and electroconductivity (in microsiemens per centimeter) were evaluated using a multiparameter probe and the parameters ammonia (NH3), nitrate (NO3), and nitrite (NO2) in the laboratory, in relation to the coagulation/flocculation time of the solid part of the effluent. The use of tannin as a coagulant/flocculant of plant origin in the treatment of swine effluents was effective in reducing turbidity and concentrations of ammonia, nitrite, and nitrate, and it allowed separation of the solid–liquid phase in approximately 68% as liquid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号