首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract:  In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2–3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988–2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.  相似文献   

2.
Abstract:  Of the roughly 12,000 known plant species in Madagascar, only 3% are found in the IUCN (World Conservation Union) Red List of Threatened Species. We assigned preliminary IUCN categories of threat to the species of a comparatively well-known tribe, Coleeae (Bignoniaceae), which comprises an endemic, species-rich radiation in Madagascar. Because the IUCN Red List Categories and Criteria 3.1 discourage the use of the data-deficient category, we developed a novel method for differentiating between range-limited species and poorly sampled species. We used the Missouri Botanical Garden (MBG) gazetteer to determine where other collection efforts had taken place. We drew buffers around each Coleeae locality and determined how many times the surrounding area had been visited since the last sighting of the specimens by intersecting the buffers with all known botanical localities from the MBG gazetteer. We determined that at least 54% of the Coleeae species are threatened with extinction. Assignments of species to this category were often due to predicted future decline within their current area of occupancy and their lack of inclusion within the protected-area network (only 42% of species are known to occur in protected areas). Three species were presumed extinct, and an additional 12 have not been seen in decades. Among the species threatened with extinction, we "rescued" six of them from the data-deficient category by considering both the sample dates and localities of places where they occurred in relation to additional collections that took place in the immediate area. Due to their recent discovery, 15 species remained in the data-deficient category. If Coleeae is representative of the Malagasy flora, or at least of other endemic-radiated plant groups, then species loss in Madagascar may be even more extreme than is realized.  相似文献   

3.
Abstract:  Mollusks are the group most affected by extinction according to the 2007 International Union for Conservation of Nature (IUCN) Red List, despite the group having not been evaluated since 2000 and the quality of information for invertebrates being far lower than for vertebrates. Altogether 302 species and 11 subspecies are listed as extinct on the IUCN Red List. We reevaluated mollusk species listed as extinct through bibliographic research and consultation with experts. We found that the number of known mollusk extinctions is almost double that of the IUCN Red List. Marine habitats seem to have experienced few extinctions, which suggests that marine species may be less extinction prone than terrestrial and freshwater species. Some geographic and ecologic biases appeared. For instance, the majority of extinctions in freshwater occurred in the United States. More than 70% of known mollusk extinctions took place on oceanic islands, and a one-third of these extinctions may have been caused precipitously by introduction of the predatory snail Euglandina rosea. We suggest that assessment of the conservation status of invertebrate species is neglected in the IUCN Red List and not managed in the same way as for vertebrate species .  相似文献   

4.
Extinction rates are expected to increase during the Anthropocene. Current extinction rates of plants and many animals remain unknown. We quantified extinctions among the vascular flora of the continental United States and Canada since European settlement. We compiled data on apparently extinct species by querying plant conservation databases, searching the literature, and vetting the resulting list with botanical experts. Because taxonomic opinion varies widely, we developed an index of taxonomic uncertainty (ITU). The ITU ranges from A to F, with A indicating unanimous taxonomic recognition and F indicating taxonomic recognition by only a single author. The ITU allowed us to rigorously evaluate extinction rates. Our data suggest that 51 species and 14 infraspecific taxa, representing 33 families and 49 genera of vascular plants, have become extinct in our study area since European settlement. Seven of these taxa exist in cultivation but are extinct in the wild. Most extinctions occurred in the west, but this outcome may reflect the timing of botanical exploration relative to settlement. Sixty-four percent of extinct plants were single-site endemics, and many occurred outside recognized biodiversity hotspots. Given the paucity of plant surveys in many areas, particularly prior to European settlement, the actual extinction rate of vascular plants is undoubtedly much higher than indicated here.  相似文献   

5.
The International Union for Conservation of Nature's Red List of Threatened Species (IUCN Red List) is the world's most comprehensive information source on the global conservation status of species. Governmental agencies and conservation organizations increasingly rely on IUCN Red List assessments to develop conservation policies and priorities. Funding agencies use the assessments as evaluation criteria, and researchers use meta-analysis of red-list data to address fundamental and applied conservation science questions. However, the circa 143,000 IUCN assessments represent a fraction of the world's biodiversity and are biased in regional and organismal coverage. These biases may affect conservation priorities, funding, and uses of these data to understand global patterns. Isolated oceanic islands are characterized by high endemicity, but the unique biodiversity of many islands is experiencing high extinction rates. The archipelago of Hawaii has one of the highest levels of endemism of any floristic region; 90% of its 1367 native vascular plant taxa are classified as endemic. We used the IUCN's assessment of the complete single-island endemic (SIE) vascular plant flora of Kauai, Hawaii, to assess the proportion and drivers of decline of threatened plants in an oceanic island setting. We compared the IUCN assessments with federal, state, and other local assessments of Kauai species or taxa of conservation concern. Finally, we conducted a preliminary assessment for all 1044 native vascular plants of Hawaii based on IUCN criterion B by estimating area of occupancy, extent of occurrence, and number of locations to determine whether the pattern found for the SIE vascular flora of Kauai is comparable to the native vascular flora of the Hawaiian Islands. We compared our results with patterns observed for assessments of other floras. According to IUCN, 256 SIE vascular plant taxa are threatened with extinction and 5% are already extinct. This is the highest extinction risk reported for any flora to date. The preliminary assessment of the native vascular flora of Hawaii showed that 72% (753 taxa) is threatened. The flora of Hawaii may be one of the world's most threatened; thus, increased and novel conservation measures in the state and on other remote oceanic islands are urgently needed.  相似文献   

6.
Previous studies show that conservation actions have prevented extinctions, recovered populations, and reduced declining trends in global biodiversity. However, all studies to date have substantially underestimated the difference conservation action makes because they failed to account fully for what would have happened in the absence thereof. We undertook a scenario‐based thought experiment to better quantify the effect conservation actions have had on the extinction risk of the world's 235 recognized ungulate species. We did so by comparing species’ observed conservation status in 2008 with their estimated status under counterfactual scenarios in which conservation efforts ceased in 1996. We estimated that without conservation at least 148 species would have deteriorated by one International Union for Conservation of Nature (IUCN) Red List category, including 6 species that now would be listed as extinct or extinct in the wild. The overall decline in the conservation status of ungulates would have been nearly 8 times worse than observed. This trend would have been greater still if not for conservation on private lands. While some species have benefited from highly targeted interventions, such as reintroduction, most benefited collaterally from conservation such as habitat protection. We found that the difference conservation action makes to the conservation status of the world's ungulate species is likely to be higher than previously estimated. Increased, and sustained, investment could help achieve further improvements.  相似文献   

7.
The International Union for Conservation of Nature (IUCN) Red List includes 832 species listed as extinct since 1600, a minuscule fraction of total biodiversity. This extinction rate is of the same order of magnitude as the background rate and has been used to downplay the biodiversity crisis. Invertebrates comprise 99% of biodiversity, yet the status of a negligible number has been assessed. We assessed extinction in the Hawaiian land snail family Amastridae (325 species, IUCN lists 33 as extinct). We did not use the stringent IUCN criteria, by which most invertebrates would be considered data deficient, but a more realistic approach comparing historical collections with modern surveys and expert knowledge. Of the 325 Amastridae species, 43 were originally described as fossil or subfossil and were assumed to be extinct. Of the remaining 282, we evaluated 88 as extinct and 15 as extant and determined that 179 species had insufficient evidence of extinction (though most are probably extinct). Results of statistical assessment of extinction probabilities were consistent with our expert evaluations of levels of extinction. Modeling various extinction scenarios yielded extinction rates of 0.4‐14.0% of the amastrid fauna per decade. The true rate of amastrid extinction has not been constant; generally, it has increased over time. We estimated a realistic average extinction rate as approximately 5%/decade since the first half of the nineteenth century. In general, oceanic island biotas are especially susceptible to extinction and global rate generalizations do not reflect this. Our approach could be used for other invertebrates, especially those with restricted ranges (e.g., islands), and such an approach may be the only way to evaluate invertebrates rapidly enough to keep up with ongoing extinction.  相似文献   

8.
Abstract: Statements of extinction will always be uncertain because of imperfect detection of species in the wild. Two errors can be made when declaring a species extinct. Extinction can be declared prematurely, with a resulting loss of protection and management intervention. Alternatively, limited conservation resources can be wasted attempting to protect a species that no longer exists. Rather than setting an arbitrary level of certainty at which to declare extinction, we argue that the decision must trade off the expected costs of both errors. Optimal decisions depend on the cost of continued intervention, the probability the species is extant, and the estimated value of management (the benefit of management times the value of the species). We illustrated our approach with three examples: the Dodo (Raphus cucullatus), the Ivory‐billed Woodpecker (U.S. subspecies Campephilus principalis principalis), and the mountain pygmy‐possum (Burramys parvus). The dodo was extremely unlikely to be extant, so managing and monitoring for it today would not be cost‐effective unless the value of management was extremely high. The probability the Ivory‐billed woodpecker is extant depended on whether recent controversial sightings were accepted. Without the recent controversial sightings, it was optimal to declare extinction of the species in 1965 at the latest. Accepting the recent controversial sightings, it was optimal to continue monitoring and managing until 2032 at the latest. The mountain pygmy‐possum is currently extant, with a rapidly declining sighting rate. It was optimal to conduct as many as 66 surveys without sighting before declaring the species extinct. The probability of persistence remained high even after many surveys without sighting because it was difficult to determine whether the species was extinct or undetected. If the value of management is high enough, continued intervention can be cost‐effective even if the species is likely to be extinct.  相似文献   

9.
Abstract:  As species become very rare and approach extinction, purported sightings can stir controversy, especially when scarce management resources are at stake. We used quantitative methods to identify reports that do not fit prior sighting patterns. We also examined the effects of including records that meet different evidentiary standards on quantitative extinction assessments for four charismatic bird species that might be extinct: Eskimo Curlew ( Numenius borealis ), Ivory-billed Woodpecker ( Campephilus principalis ), Nukupu`u ( Hemignathus lucidus ), and O`ahu `Alauahio ( Paroreomyza maculata ). For all four species the probability of there being a valid sighting today, given the past pattern of verified sightings, was estimated to be very low. The estimates of extinction dates and the chance of new sightings, however, differed considerably depending on the criteria used for data inclusion. When a historical sighting record lacked long periods without sightings, the likelihood of new sightings declined quickly with time since the last confirmed sighting. For species with this type of historical record, therefore, new reports should meet an especially high burden of proof to be acceptable. Such quantitative models could be incorporated into the International Union for Conservation of Nature's Red List criteria to set evidentiary standards required for unconfirmed sightings of "possibly extinct" species and to standardize extinction assessments across species.  相似文献   

10.
In International Union for Conservation of Nature (IUCN) Red List assessments, extent of occurrence (EOO) is a key measure of extinction risk. However, the way assessors estimate EOO from maps of species’ distributions is inconsistent among assessments of different species and among major taxonomic groups. Assessors often estimate EOO from the area of mapped distribution, but these maps often exclude areas that are not habitat in idiosyncratic ways and are not created at the same spatial resolutions. We assessed the impact on extinction risk categories of applying different methods (minimum convex polygon, alpha hull) for estimating EOO for 21,763 species of mammals, birds, and amphibians. Overall, the percentage of threatened species requiring down listing to a lower category of threat (taking into account other Red List criteria under which they qualified) spanned 11–13% for all species combined (14–15% for mammals, 7–8% for birds, and 12–15% for amphibians). These down listings resulted from larger estimates of EOO and depended on the EOO calculation method. Using birds as an example, we found that 14% of threatened and near threatened species could require down listing based on the minimum convex polygon (MCP) approach, an approach that is now recommended by IUCN. Other metrics (such as alpha hull) had marginally smaller impacts. Our results suggest that uniformly applying the MCP approach may lead to a one‐time down listing of hundreds of species but ultimately ensure consistency across assessments and realign the calculation of EOO with the theoretical basis on which the metric was founded.  相似文献   

11.
Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations—over which population declines are assessed under criterion A—was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.  相似文献   

12.
Local, regional, and global extinctions caused by habitat loss, degradation, and fragmentation have been widely reported for the tropics. The patterns and drivers of this loss of species are now increasingly well known in Amazonia, but there remains a significant gap in understanding of long‐term trends in species persistence and extinction in anthropogenic landscapes. Such a historical perspective is critical for understanding the status and trends of extant biodiversity as well as for identifying priorities to halt further losses. Using extensive historical data sets of specimen records and results of contemporary surveys, we searched for evidence of local extinctions of a terra firma rainforest avifauna over 200 years in a 2500 km2 eastern Amazonian region around the Brazilian city of Belém. This region has the longest history of ornithological fieldwork in the entire Amazon basin and lies in the highly threatened Belém Centre of Endemism. We also compared our historically inferred extinction events with extensive data on species occurrences in a sample of catchments in a nearby municipality (Paragominas) that encompass a gradient of past forest loss. We found evidence for the possible extinction of 47 species (14% of the regional species pool) that were unreported from 1980 to 2013 (80% last recorded between 1900 and 1980). Seventeen species appear on the International Union for Conservation of Nature Red List, and many of these are large‐bodied. The species lost from the region immediately around Belém are similar to those which are currently restricted to well‐forested catchments in Paragominas. Although we anticipate the future rediscovery or recolonization of some species inferred to be extinct by our calculations, we also expect that there are likely to be additional local extinctions, not reported here, given the ongoing loss and degradation of remaining areas of native vegetation across eastern Amazonia. Doscientos Años de Extinciones Locales de Aves en la Amazonia Oriental  相似文献   

13.
14.
Estimates of species geographic ranges constitute critical input for biodiversity assessments, including those for the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. Area of occupancy (AOO) is one metric that IUCN uses to quantify a species’ range, but data limitations typically lead to either under- or overestimates (and unnecessarily wide bounds of uncertainty). Fortunately, existing methods in which range maps and land-cover data are used to estimate the area currently holding habitat for a species can be extended to yield an unbiased range of plausible estimates for AOO. Doing so requires estimating the proportion of sites (currently containing habitat) that a species occupies within its range (i.e., prevalence). Multiplying a quantification of habitat area by prevalence yields an estimate of what the species inhabits (i.e., AOO). For species with intense sampling at many sites, presence–absence data sets or occupancy modeling allow calculation of prevalence. For other species, primary biodiversity data (records of a species’ presence at a point in space and time) from citizen-science initiatives and research collections of natural history museums and herbaria could be used. In such cases, estimates of sample prevalence should be corrected by dividing by the species’ detectability. To estimate detectability from these data sources, extensions of inventory-completeness analyses merit development. With investments to increase the quality and availability of online biodiversity data, consideration of prevalence should lead to tighter and more realistic bounds of AOO for many taxonomic groups and geographic regions. By leading to more realistic and representative characterizations of biodiversity, integrating maps of current habitat with estimates of prevalence should empower conservation practitioners and decision makers and thus guide actions and policy worldwide.  相似文献   

15.
At local scales, infectious disease is a common driver of population declines, but globally it is an infrequent contributor to species extinction and endangerment. For species at risk of extinction from disease important questions remain unanswered, including when does disease become a threat to species and does it co‐occur, predictably, with other threats? Using newly compiled data from the International Union for Conservation of Nature (IUCN) Red List, we examined the relative role and co‐occurrence of threats associated with amphibians, birds, and mammals at 6 levels of extinction risk (i.e., Red List status categories: least concern, near threatened, vulnerable, endangered, critically endangered, and extinct in the wild/extinct). We tested the null hypothesis that the proportion of species threatened by disease is the same in all 6 Red List status categories. Our approach revealed a new method for determining when disease most frequently threatens species at risk of extinction. The proportion of species threatened by disease varied significantly between IUCN status categories and linearly increased for amphibians, birds, and all species combined as these taxa move from move from least concern to critically endangered. Disease was infrequently the single contributing threat. However, when a species was negatively affected by a major threat other than disease (e.g., invasive species, land‐use change) that species was more likely to be simultaneously threatened by disease than species that had no other threats. Potential drivers of these trends include ecological factors, clustering of phylogenetically related species in Red List status categories, discovery bias among species at greater risk of extinction, and availability of data. We echo earlier calls for baseline data on the presence of parasites and pathogens in species when they show the first signs of extinction risk and arguably before. La Amenaza de Enfermedades Incrementa a Medida que las Especies se Aproximan a la Extinción  相似文献   

16.
The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.  相似文献   

17.
Abstract:  The national systems used in the evaluation of extinction risk are often touted as more readily applied and somehow more regionally appropriate than the system of the International Union for Conservation of Nature (IUCN). We compared risk assessments of the Mexican national system (method for evaluation of risk of extinction of wild species [MER]) with the IUCN system for the 16 Polianthes taxa (Agavaceae), a genus of plants with marked variation in distribution sizes. We used a novel combination of herbarium data, geographic information systems (GIS), and species distribution models to provide rapid, repeatable estimates of extinction risk. Our GIS method showed that the MER and the IUCN system use similar data. Our comparison illustrates how the IUCN method can be applied even when all desirable data are not available, and that the MER offers no special regional advantage with respect to the IUCN regional system. Instead, our results coincided, with both systems identifying 14 taxa of conservation concern and the remaining two taxa of low risk, largely because both systems use similar information. An obstacle for the application of the MER is that there are no standards for quantifying the criteria of habitat condition and intrinsic biological vulnerability. If these impossible-to-quantify criteria are left out, what are left are geographical distribution and the impact of human activity, essentially the considerations we were able to assess for the IUCN method. Our method has the advantage of making the IUCN criteria easy to apply, and because each step can be standardized between studies, it ensures greater comparability of extinction risk estimates among taxa.  相似文献   

18.
There now appears to be a plausible pathway for reviving species that have been extinct for several decades, centuries, or even millennia. I conducted an ethical analysis of de‐extinction of long extinct species. I assessed several possible ethical considerations in favor of pursuing de‐extinction: that it is a matter of justice; that it would reestablish lost value; that it would create new value; and that society needs it as a conservation last resort. I also assessed several possible ethical arguments against pursuing de‐extinction: that it is unnatural; that it could cause animal suffering; that it could be ecologically problematic or detrimental to human health; and that it is hubristic. There are reasons in favor of reviving long extinct species, and it can be ethically acceptable to do so. However, the reasons in favor of pursuing de‐extinction do not have to do with its usefulness in species conservation; rather, they concern the status of revived species as scientific and technological achievements, and it would be ethically problematic to promote de‐extinction as a significant conservation strategy, because it does not prevent species extinctions, does not address the causes of extinction, and could be detrimental to some species conservation efforts. Moreover, humanity does not have a responsibility or obligation to pursue de‐extinction of long extinct species, and reviving them does not address any urgent problem. Therefore, legitimate ecological, political, animal welfare, legal, or human health concerns associated with a de‐extinction (and reintroduction) must be thoroughly addressed for it to be ethically acceptable. La Ética de Revivir Especies Extintas Hace Mucho Tiempo Sandler  相似文献   

19.
Abstract:  Infectious disease is listed among the top five causes of global species extinctions. However, the majority of available data supporting this contention is largely anecdotal. We used the IUCN Red List of Threatened and Endangered Species and literature indexed in the ISI Web of Science to assess the role of infectious disease in global species loss. Infectious disease was listed as a contributing factor in <4% of species extinctions known to have occurred since 1500 (833 plants and animals) and as contributing to a species' status as critically endangered in <8% of cases (2852 critically endangered plants and animals). Although infectious diseases appear to play a minor role in global species loss, our findings underscore two important limitations in the available evidence: uncertainty surrounding the threats to species survival and a temporal bias in the data. Several initiatives could help overcome these obstacles, including rigorous scientific tests to determine which infectious diseases present a significant threat at the species level, recognition of the limitations associated with the lack of baseline data for the role of infectious disease in species extinctions, combining data with theory to discern the circumstances under which infectious disease is most likely to serve as an agent of extinction, and improving surveillance programs for the detection of infectious disease. An evidence-based understanding of the role of infectious disease in species extinction and endangerment will help prioritize conservation initiatives and protect global biodiversity.  相似文献   

20.
How many species have gone extinct in modern times before being described by science? To answer this question, and thereby get a full assessment of humanity's impact on biodiversity, statistical methods that quantify undetected extinctions are required. Such methods have been developed recently, but they are limited by their reliance on parametric assumptions; specifically, they assume the pools of extant and undetected species decay exponentially, whereas real detection rates vary temporally with survey effort and real extinction rates vary with the waxing and waning of threatening processes. We devised a new, nonparametric method for estimating undetected extinctions. As inputs, the method requires only the first and last date at which each species in an ensemble was recorded. As outputs, the method provides estimates of the proportion of species that have gone extinct, detected, or undetected and, in the special case where the number of undetected extant species in the present day is assumed close to zero, of the absolute number of undetected extinct species. The main assumption of the method is that the per‐species extinction rate is independent of whether a species has been detected or not. We applied the method to the resident native bird fauna of Singapore. Of 195 recorded species, 58 (29.7%) have gone extinct in the last 200 years. Our method projected that an additional 9.6 species (95% CI 3.4, 19.8) have gone extinct without first being recorded, implying a true extinction rate of 33.0% (95% CI 31.0%, 36.2%). We provide R code for implementing our method. Because our method does not depend on strong assumptions, we expect it to be broadly useful for quantifying undetected extinctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号