首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The aim of this study was to determine the effects of ozone and salinity, singly and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Chickpea plants were grown in non-saline and saline conditions, with and without a repeated exposure to ozone. Salinity at a concentration of 30 mM NaCl caused a substantial reduction in plant height, number of leaves and the dry weights of the leaves, stems and roots. Biomass allocation to the leaves increased, predominantly at the expense of the roots. Ozone at a concentration of 85 nmol mol(-1) for 6 h per day for 25 days reduced plant height and dry weights but had no effect on leaf number. The results show substantial effects of salinity and ozone on chickpea growth and ion concentrations. When ozonated plants are grown in the presence of salinity, further reductions in growth occur.  相似文献   

2.
Agrawal SB  Singh A  Rathore D 《Chemosphere》2005,61(2):218-228
A field study was conducted to evaluate the suitability of ethylene diurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea; EDU) in assessing the impact of O3 on mung bean plants (Vigna radiata L. var. Malviya Jyoti) grown in suburban area of Allahabad city situated in a dry tropical region of India. EDU is a synthetic chemical having anti-ozonant property. Mean monthly O3 concentration varied between 64 and 69 microg m(-3) during the experimental period. In comparison to EDU-treated plants, non-EDU-treated plants showed significant reductions in plant growth and yield under ambient conditions. Significant favourable effects of EDU-application were observed with respect to photosynthetic pigments, soluble protein, ascorbic acid and phenol contents. EDU-treated plants maintained higher levels of pigments, protein and ascorbic acid in foliage as compared to non-EDU-treated ones. The study clearly demonstrated that EDU alleviates the unfavourable effects of O3 on mung bean plants, and therefore can be used as a tool to assess the growth and yield losses in areas having higher O3 concentrations.  相似文献   

3.
The effects of gamma-irradiated sludge on the growth and yield of methi (Trigonella foenum-graecum L.) in pot cultures have been studied. Gamma-irradiated sludge was found to inhibit the shoot length after 45 and 90 days of plant growth compared to plants grown in soil containing unirradiated sludge. The untreated sludge did not exhibit any detrimental effect on the shoot length of plants compared to the control. The root length of plants grown in soil supplemented with either gamma-irradiated or unirradiated sludge was found to be inhibited after 45 days of growth. However, irradiation of sludge resulted in the higher inhibition of root length of plants compared to when unirradiated sludge was used. The gamma-irradiated sludge appeared to negatively affect the physical growth parameters of the plant. The significant positive effect of gamma-irradiated sludge was observed on the biochemical growth parameters and yield of methi plants. There was a 3.5-, 1.7- and 2-fold increase in the total protein content, total soluble sugars and starch content, respectively, of plants grown in soil supplemented with gamma-irradiated sludge after 45 days of growth. The gamma-irradiated sludge did not show any detrimental effect on any of the three biochemical parameters studied, even after 90 days of plant growth. The sludge obtained from the conventional treatment process was found to be inhibitory to the protein and starch content of plants in the latter stages of plant growth. A significant increase in the yield of methi plants, after 45 as well as 90 days, grown in the presence of gamma-irradiated sludge indicates a beneficial effect of recycling of irradiated sludge for agricultural applications.  相似文献   

4.
The effects of gamma-irradiated sludge on the growth and yield of chickpea (Cicer arietinum) in pot cultures have been studied. Compared to plants grown only in soil, root length, fresh weight and dry weight of plants grown in soil supplemented with unirradiated sludge were found to be significantly reduced. This inhibition in growth was found to be nullified when plants were grown in soil supplemented with gamma-irradiated sludge, suggesting that gamma radiation induced inactivation of toxic substance(s) in sludge. The protein content of plants grown in soil supplemented with irradiated sludge was also found to be significantly increased compared to those grown with unirradiated or no sludge, after 45 days. There was no significant effect of gamma irradiated sludge on shoot length, total soluble sugars, starch content and yield of chickpea plants. The results obtained suggest that the sludge tested, and obtained from the digester of a conventional domestic sewage treatment plant, is inhibitory to several growth parameters. Gamma irradiation of sewage resulted in removal of this inhibition. This suggests a possibility of beneficial and safe recycling of gamma-irradiated sludge for agricultural uses.  相似文献   

5.
To clarify the response of growth and root functions to low concentrations of ozone (O(3)), rice plants (Oryza sativa L.) were exposed to O(3) at 0.0 (control), 0.05 and 0.10 ppm for 8 weeks from vegetative to early heading stages. Exposure to 0.05 ppm O(3) tended to slightly stimulate the dry weight of whole plants up to 5 weeks and then slightly decrease the dry weight of whole plants. However, these effects were statistically significant only at 6 weeks. Exposure to 0.10 ppm O(3) reduced the dry weight of whole plants by 50% at 5 and 6 weeks, and thereafter the reduction of the dry weight of whole plants was gradually alleviated. Those changes in dry weight can be accounted for by a decrease or increase in the relative growth rate (RGR). The changes in the RGR caused by 0.05 and 0.10 ppm O(3) could be mainly attributed to the effect of O(3) on the net assimilation rate. Root/shoot ratio was lowered by both 0.05 and 0.10 ppm O(3) throughout the exposure period. The root/shoot ratio which had severely decreased at 0.10 ppm O(3) in the first half period of exposure (1-4 weeks) became close to the control in the latter part of exposure (5-8 weeks). Time-course changes in NH(4)-N root uptake rate were similar to those in the root/shoot ratio especially for 0.10 ppm O(3). On the other hand, root respiration increased from the middle to later periods. Since it is to be supposed that plants grown under stressed conditions change the ratio of plant organ weight to achieve balance between the proportion of shoots to roots in the plant and their activity for maintaining plant growth, these changes in root/shoot ratio and nitrogen uptake rate under long-term exposure can be considered to be an adaptive response to maintain rice growth under O(3) stress.  相似文献   

6.
To study the impact of SO(2) and SO(2) + ascorbic acid on growth and partitioning of dry matter in Trigonella foenum-graecum L., two-week-old plants were exposed to SO(2) for 2 h daily over a 42 day period. One of the exposed sets was treated with ascorbic acid. Plants were grown in a wire house and unexposed plants were used as controls for comparison. The parameters measured, such as dry weights of leaf, stem and root per plant, were found to be lower in the exposed sets than in the controls. The reductions were greater in dry weights of stem and root as compared with weights of leaves, indicating that the partitioning of the dry matter was altered. Greater amounts of soluble sugars and starch in the leaves of exposed plants, compared with the stem, also revealed that translocation was hampered. Reductions were greater in fruiting than in flowering, suggesting that fruit abortion was high. Although ascorbic acid treatment could mitigate the effect of SO(2), the differences were not found to be statistically significant. Significant changes were seen in fruit yield, suggesting that the effect of ascorbic acid is cumulative. The impact of SO(2) and SO(2) + ascorbic acid on partitioning of dry matter to different 'sinks' is discussed.  相似文献   

7.
Seeds of Cicer arietinum L. plants are edible and a valuable source of protein. Accumulation of toxic metals in the edible part of the plant, grown in fields close to fly-ash (FA) landfills, may pose a threat to human health. In the present study, the effects of FA and its amendments with different ameliorants viz., garden soil (GS), press mud (PM) and saw dust (SD), on total soluble protein contents, amino acid composition and metal accumulation in seeds were investigated in var. CSG-8962 and var. C-235 of C. arietinum. Plants accumulated adequate amounts of essential metals viz. Fe, Cu, Zn in seeds, while the toxic metals such as Cd and Cr were taken up in smaller quantities. The accumulation of Cr and Cd was less in var. C-235 than var. CSG-8962. Amendment of FA with PM enhanced the amount of soluble protein and amino acids in both varieties and was found to be superior among all tested ameliorants. Both quantitative and qualitative analysis of amino acids showed better response in var. C-235 as compared to var. CSG-8962. Thus var. C-235 seems to be suitable for cultivation in FA contaminated areas due to more accumulation of essential metals and less accumulation of toxic metals in seeds. Application of PM may further improve the growth of plants and nutritional quality of seeds.  相似文献   

8.
In the present experiment the seeds of Cicer arietinum (L.) cv. Uday were inoculated with specific Rhizobium grown in sandy loam soil and were allowed to grow for 15 days. At this stage, the seedlings were supplied with 0, 50, 100 or 150 microM of cadmium in the form of cadmium chloride and sprayed with 0.01 microM of 28-homobrassinolide (HBL) at 30-day stage. The data indicated that plant fresh and dry mass, number of nodules, their fresh and dry mass, leghemoglobin content, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, nitrate reductase and carbonic anhydrase activities decreased proportionately with the increasing concentrations of cadmium but the content of proline and the activities of catalase, peroxidase and superoxide dismutase increased. The ill effect, generated by cadmium, was overcome if the stressed plants were sprayed with HBL.  相似文献   

9.
The single and combined effects of ozone (O(3)) and Fusarium oxysporum on growth and disease expression of soybean genotypes differing in foliar sensitivity to O(3) were studied in the greenhouse. O(3) had no effect on root and hypocotyl rot severity of PI 153.283 (O(3)-sensitive, S) or PI 189.907 (O(3)-tolerant, T) maturity group I soybean lines. Plants of both genotypes infected with F. oxysporum and exposed to O(3) had greater reductions in relative growth rate (RGR), net assimilation rate (NAR), and had more stippled leaves per plant than Fusarium-free plants exposed to O(3). O(3) alone had a greater impact on shoot dry weight, RGR, and NAR of PI 153.283 (S) than of PI 189.907 (T). O(3) alone reduced shoot and root dry weights primarily through a depression in NAR and less through reduced leaf area. F. oxysporum alone reduced root dry weight at 35 days; however, infected plants responded with increases in root dry weight from 49 to 63 days. Similarly, F. oxysporum alone lowered early RGR but subsequent RGR decline was less rapid while NAR remained high, particularly during later sampling intervals. Infection by F. oxysporum that causes root and hypocotyl rot increased soybean sensitivity to O(3) by prolonging active vegetative growth.  相似文献   

10.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

11.
The impact of distillery effluent in various concentrations (1, 2.5, 5, 10, 25, 50, 75 and 100%) on the seed germination, Speed of Germination Index, growth behaviour, leaf area, biomass, net primary productivity, pigment content, reproductive capacity, seed output, seed weight, seed density and the seed protein content of Cicer arietinum L. plants was investigated. The percentage and speed of germination of seeds were increasingly retarded with increase in effluent concentration and at 100% concentration there was no germination. The seedlings exhibited maximum shoot length at 5% concentration and maximum root length at 2.5% concentration. The values of root and shoot lengths, leaf area, biomass, net primary productivity, pigment content, reproductive capacity, seed output, seed weight, seed density and seed protein content in pot plants exhibited a gradual increase from the control up to 5% concentration and decreases at higher concentrations. The very high BOD load and the presence of excessive concentrations of soluble salts could be responsible for the toxicity of the effluent. The effluent at up to 5% concentration was, however, beneficial for the overall growth parameters studied and can thus be used as a liquid fertilizer.  相似文献   

12.
Tomato (Lycopersicon esculentum Mill.) 'New Yorker' plants were exposed to O(3) to compare leaf diffusive conductance (LDC) before exposure to O(3) with O(3) sorption rates and visible injury ratings. Two plant development stages and four or five leaf growth stages were examined. The LDC varied among leaf growth stages and between plant development stages and leaf surfaces; there was no continuity in the LDC pattern. Sorption rates differed among some leaf growth stages, and between plant development stages in expanding leaves (growth stage 1). For both development stages high sorption rates occurred in fully mature leaves; otherwise little similarity between corresponding leaf growth stages was evident. Total O(3) flux to the leaf was not well predicted by the LDC for water vapour; nor was visible injury well related to total flux. Differential mesophyll processes and leaf surface sorption capabilities may have accounted for some of the inconsistencies observed.  相似文献   

13.
The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l(-1) O3 (control) and non-filtered (NF) air plus 50 nl l(-1) O3. Significant O3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O3-induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O3 depending on the species in competition, showing an overall higher sensitivity to O3 when in mixture with Achillea.  相似文献   

14.
Burley tobacco is susceptible to several different types of virus diseases that suppress plant growth and development. Two viruses, tobacco etch virus (TEV) and tobacco vein mottling virus (TVMV), are particularly damaging to burley. Burley tobacco cultivars resistant to these two viruses are currently being developed. Some of these cultivars also show differential sensitivity to ozone (O3). Recent field observations have suggested that burley tobacco infected with TEV and TVMV was more sensitive to O3 than non-virus-infected tobacco. Experiments were designed to identify interactions between O3 and each of the two virus diseases. Three cultivars, Burley 21, Burley 49, and Greeneville 131, which were differentially sensitive to O3 and both virus diseases, were grown in a charcoal-filtered greenhouse environment. Tobacco plants of each cultivar were inoculated with TEV or TVMV, and virus infected and virus-free plants were exposed to 0.0, 0.05, 0.2, and 0.4 ppm O3 (1 ppm of O3 is equivalent to 1960 microg m(-3)), 3h day(-1), 5 days week(-1) for 3 weeks in continuous-stirred tank reactor exposure chambers in the greenhouse. Exposures were begun after systemic virus symptoms were expressed in inoculated plants. The suppression of lead and stem dry weight by increasing O3 concentrations was less in TEV-infected burley cultivars than in noninfected burley cultivars. Tobacco vein mottling virus infection enhanced biomass suppression by O3 on Burley 21 and on Greeneville 131, but not on Burley 49. Thus, the interactions with O3 were dependent on specific virus-cultivar combinations.  相似文献   

15.
Alfalfa (Medicago sativa L.) were exposed to O(3) concentrations varying between 118 x 10(-6) microg cm(-3) (0.06 ppm) and 157 x 10(-6) microg cm(-3) (0.08 ppm) for 6 h per day 5 days per week for several weeks. Typical plants were sacrificed weekly, and growth parameters were measured. O(3) reduced overall growth, relative growth rates and unit leaf rates in alfalfa before it was cut, indicating that O(3) had reduced photosynthesis. However, after the alfalfa was cut, these same parameters indicated that in some cases, O(3)-stressed plants had greater photosynthetic rates than controls during regrowth. O(3) also altered dry matter partitioning. Roots were most affected, followed by leaves and stems, respectively. In general, O(3) reduced photosynthate production and reduced the proportion of photosynthate partitioned to roots relative to leaves and stems. This could reduce starch reserves in alfalfa, and be detrimental to stand longevity. However, the post-cutting study indicated that at least some alfalfa cultivars may be able to acclimate to O(3)-stress, though plants did not fully recover from pre-cutting differences.  相似文献   

16.
Effect of air pollution on peri-urban agriculture: a case study   总被引:10,自引:0,他引:10  
Peri-urban agriculture is vital for the urban populations of many developing countries. Increases in both industrialization and urbanization, and associated air pollution threaten urban food production and its quality. Six hour mean concentrations were monitored for SO(2), NO(2) and O(3) and plant responses were measured in terms of physiological characteristics, pigment, biomass and yield. Parameter reductions in mung bean (Vigna radiata), palak (Beta vulgaris), wheat (Triticum aestivum) and mustard (Brassica compestris) grown within the urban fringes of Varanasi, India correlated directly with the gaseous pollutants levels. The magnitude of response involved all three gaseous pollutants at peri-urban sites; O(3) had more influence at a rural site. The study concluded that air pollution in Varanasi could negatively influence crop yield.  相似文献   

17.
The impact on plant growth of the simultaneously changing factors of the global climate, rising tropospheric O3 concentrations and increasing UV-B radiation fluxes, has been tested in a combined glasshouse and growth chamber experiment. The saltmarsh grass species Elymus athericus was sequentially fumigated for two weeks with O3 and for another two weeks irradiated with UV-B (vv). Exposure to elevated UV-B did not negatively affect photosynthesis or plant growth. Fumigation with O3 had a depressing effect on net photosynthesis, the number and biomass of flowers, the number of leaves and the number of shoots. O3-induced damage only was observed in plants which had been fumigated during the last two weeks of the experiment. Since interactive responses were not observed, results suggest different primary target sites for O3 and UV-B within the plant.  相似文献   

18.
Relative sensitivity of five common Egyptian plant species namely, Senecio vulgaris, Malva parviflora, Sonchus oleraceus, Medicago sativa and Melilotus indicus to elevated levels of ozone has been studied. The plants were exposed to charcoal filtered air (CFA) and different levels of O3 (50 and 100 ppb) for 5 h per day. The studied parameters were recorded for five consecutive days after fumigation. The foliar injury varied significantly among species in a dose-dependent manner. Severe injury symptoms were recorded on the leaves of M. sativa. With the exception of M. parviflora, all species exhibited significant increases in the percentage reduction of the above-ground dry weight as a result of reductions in both leaf and stem dry weights. M. sativa showed a marked reduction in its relative growth rate at elevated levels of O3. The extent of chlorophyll a destruction was higher in both M. sativa and S. oleraceus than in the other species tested. No differences in the sensitivity of chlorophylls a+b and carotenoids to ozone levels were recorded in this work. Percentage reduction of ascorbic acid was higher in M. sativa and S. oleraceus, compared with the other species studied. With respect to relative percentages of proline, there was a significant difference in the responses of plants to ozone. According to the ozone resistance (R%), measured as relative growth rate, the test species were arranged in the descending order: M. parviflora>M. Indicus>S. Vulgaris>S. Oleraceus>M. sativa. In M. sativa, both determinant and correlation coefficients are well reflected in the relationship between its physiological response, its performance and ozone levels, supporting its recommendation as a candidate for biomonitoring in Egypt.  相似文献   

19.
A concentration as low as 1 microM lead (Pb) is highly toxic to plants, but previous studies have typically related plant growth to the total amount of Pb added to a solution. In the present experiment, the relative fresh mass of cowpea (Vigna unguiculata) was reduced by 10% at a Pb2+ activity of 0.2 microM for the shoots and at a Pb2+ activity of 0.06 microM for the roots. The primary site of Pb2+ toxicity was the root, causing severe reductions in root growth, loss of apical dominance (shown by an increase in branching per unit root length), the formation of localized swellings behind the root tips (due to the initiation of lateral roots), and the bending of some root tips. In the root, Pb was found to accumulate primarily within the cell walls and intercellular spaces.  相似文献   

20.
To study plant growth and yield effects of the antiozonant ethylenediurea (EDU), which is frequently used for ozone crop loss assessments, dose-response studies were carried out with potted bean plants under greenhouse conditions in winter and spring. Two cultivars of Phaseolus vulgaris L., differing in sensitivity to ozone (O(3)), were grown in unfiltered air on a sandy loam rich in organic matter and on a vermiculite-clay mixture. Four treatments of EDU at concentrations from 300 to 800 mg liter(-1) were given as a soil drench during plant development. Foliar symptoms of EDU phytoxicity were observed at all doses, and plant biomass, particularly pod dry weight, was considerably reduced to increasing doses of EDU. Primary and first trifoliate leaf weight in EDU-treated plants increased as did the number of buds, indicating an extension of vegetative growth and a delay of reproductive processes. 'BBL 290' beans, which are O(3)-sensitive, were injured by EDU more than the O(3)-tolerant 'BBL 274'. The phytotoxic effects of EDU were more pronounced in the synthetic growth substrate than in field soil. In a second experiment, EDU was applied in concentrations from 100 to 400 mg liter(-1) to 'BBL 290' plants, exposed to filtered air or simulated levels of O(3) pollution. In field soil, plant growth and biomass partitioning in filtered air was only slightly altered by EDU, although leaf injury due to EDU occurred. In the vermiculite-clay mix, the biomass of most plant organs, particularly that of roots, was linearly reduced with increasing EDU doses. O(3) did not cause any alteration in plant biomass in field soil-grown and EDU-treated plants. Ozone leaf injury, which affected 67% of primary leaf area in non-treated plants, was completely suppressed by EDU doses as low as 100 mg liter(-1). This indicates that low concentrations of EDU, which do not affect plant growth in field soil, provide sufficient protection from O(3) injury. The need for careful EDU dose-response studies prior to field assessments is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号