首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
进行了添加乙醇作为碳源强化油制气废水生物降解的研究,并利用GC/MS分析对油制气废水中芳烃类化合物的降解进行了初步研究。研究表明,共代谢基质乙醇的加入,可使菌种S-2、Y-3、XH-3、M-3对COD、氨氮、可萃取有机物等指标的去除率分别提高17.6%~25.6%、34.9%~42.8%、10.4%~14.2%;但在所采用的时间范围内,酚类化合物的去除率降低;芳烃类化合物的去除率提高15.4%~21.2%。除了维持无共代谢条件下对芳环数≤3的芳烃类化合物的良好降解能力外,对芳环数为4~6的化合物降解能力也有所提高。  相似文献   

2.
Transport and degradation of de-icing chemical (containing propylene glycol, PG) in the vadose zone were studied with a lysimeter experiment and a model, in which transient water flow, kinetic degradation of PG and soil chemistry were combined. The lysimeter experiment indicated that aerobic as well as anaerobic degradation occurs in the vadose zone. Therefore, the model included both types of degradation, which was made possible by assuming advection-controlled (mobile) and diffusion-controlled (immobile) zones. In the mobile zone, oxygen can be transported by diffusion in the gas phase. The immobile zone is always water-saturated, and oxygen only diffuses slowly in the water phase. Therefore, the model is designed in a way that the redox potential can decrease when PG is degraded, and thus, anaerobic degradation can occur. In our model, manganese oxide (MnO2, which is present in the soil) and NO \(_{3}^{-}\) (applied to enhance biodegradation) can be used as electron acceptors for anaerobic degradation. The application of NO \(_{3}^{-}\) does not result in a lower leaching of PG nor in a slower depletion of MnO2. The thickness of the snowcover influences the leached fraction of PG, as with a high infiltration rate, transport is fast, there is less time for degradation and thus more PG will leach. The model showed that, in this soil, the effect of the water flow dominates over the effect of the degradation parameters on the leaching at a 1-m depth.  相似文献   

3.
Ye FX  Shen DS 《Chemosphere》2004,54(10):1573-1580
The acclimation of sludge from Hangzhou citrate factory and Hangzhou municipal wastewater treatment plant for degradation dechlorination of chlorophenols (CPs) compounds, and its biodegradation kinetics were studied in batch process with or without addition of sucrose. Three monochlorophenols (2-CP; 3-CP; 4-CP) and pentachlorophenol (PCP) were concurrently fed to different bioreactors. The parameters that were monitored included biogas production, biogas composition and chemical oxygen demand (COD). The results showed that acclimation with chlorophenol can increase the degradation activity of anaerobic sludge and degradation rate of chlorophenolic compounds, and reduce the lag time. Degradation dechlorination activity of the acclimated sludge strongly depended on sludge source, microorganism population and chlorophenol congener. 2-CP was more easily acclimated than 3-CP and 4-CP. Among the four tested compounds, 4-CP was the most difficult to be acclimated. The observed degradation rate with presence of sucrose was higher than that with absence of sucrose, suggesting that addition of the external carbon source can stimulate the formation of acclimated sludge which could effectively degrade chlorophenols. Kinetic equations of biodegradation of chlorophenols were also presented in this paper.  相似文献   

4.
通过X-射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外可见光漫反射谱(UV-vis)对碳纳米管/二氧化钛/壳聚糖复合薄膜的晶体结构和形貌进行表征,以室内空气典型污染物气相苯为模型反应物,研究碳纳米管/二氧化钛/壳聚糖催化薄膜的光催化活性及其对苯的光降解机理。结果表明,制备的碳纳米管/二氧化钛/壳聚糖催化薄膜所具有的良好催化活性归功于碳纳米管、二氧化钛和壳聚糖三者的协调效应;气相苯光降解产生的主要中间产物是乙酸乙酯和十一烷,以及少量的丙烯醛、4-羰基-甲基-苯乙酮、十二烷烃、2,4,-二叔丁基苯酚、二十一烷烃。根据红外光谱分析与GC/MS分析结果,进一步提出了气相苯的降解机理过程。  相似文献   

5.
Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha-1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t1/2 = 3.7 days), followed by a slower dissipation rate at the end (t1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

6.
用低浓度SO2诱导驯化方法获得高效脱硫菌群,并用分离培养与16S rRNA基因测序技术相结合的方法鉴定菌群种属,分析驯化过程中种群结构的动态变化,同时研究分离纯菌种的脱硫性能。结果表明,从诱导驯化7 d和14 d菌液中分别分离出23株菌和22株菌,16S rRNA序列分析发现这些菌归属于13个种,其中有6个种(Rhodococcus erythropolis、Pseudomonas putida、Microbacterium oxydans、Sphingomonas koreensis、Acinetobacter junii、Acinetobacter johnsonii)对SO2-3有较强的降解能力,并在持续驯化过程中稳定的生长传代,降解产物以硫酸根为主,还有极少量的单质硫。与含混合菌的驯化菌液降解SO2-3的能力相比,单一脱硫菌的脱硫性能较弱。脱硫功能菌株及其基本特性的研究为微生物处理SO2烟气提供了丰富的菌源信息和理论基础。  相似文献   

7.
The photocatalysed degradation of two selected priority organic pollutants, namely benzidine (1) and 1,2-diphenylhydrazine (DPH, 2) has been investigated in aqueous suspensions of titanium dioxide (TiO2) under a variety of conditions employing a pH-stat technique. The degradation was studied by monitoring the change in substrate concentration of the model compound employing HPLC analysis and the decrease in total organic carbon content, respectively, as a function of irradiation time. The degradation kinetics were studied under different conditions such as reaction pH, substrate and photocatalyst concentration, type of TiO2 photocatalyst and the presence of alternative additives such as H2O2, KBrO3 and (NH4)2S2O8 besides molecular oxygen. The degradation rates and the photonic efficiencies were found to be strongly influenced by the above parameters. Toxicity tests for the irradiated samples of benzidine measuring the luminescence of bacteria Vibrio fischeri after 30 min of incubation were also performed. 4-amino-biphenyl (7) and hydroquinone (13) were identified as intermediate products by GC/MS technique and probable pathways for the formation of the products are proposed.  相似文献   

8.
In the present work the effect of the alkyl chain length and the position of the sulfophenyl substituent of the linear alkylbenzene sulfonates (LAS) on their anaerobic biodegradability have been investigated. Degradation kinetics of the linear alkyl benzene sulfonates homologues, 2C10LAS, 2C12LAS and 2C14LAS, have been studied. It has been also investigated the effect of the isomer type on the degradation rate of the LAS molecule through the comparative study of the 2C10LAS and 5C10LAS isomers. Batch anaerobic biodegradation tests were performed using sludge from the anaerobic digester of a wastewater treatment plant as microorganisms source. Ultimate biodegradation was evaluated from the biogas production whereas primary biodegradation was determined by specific analysis of the surfactant. LAS homologues and isomers showed a negligible primary biodegradation under anaerobic conditions. Furthermore, analysis of sulfophenyl carboxilates (SPC) by LC–MS indicated a low and constant level of these LAS degradation metabolites over the test period. These data are consistent with a minimal transformation of the LAS parent molecule in the anaerobic digesters. On the other hand, the addition of the shortest alkyl chain length homologues, decyl and dodecylbenzene sulfonates, reduces the biogas production whereas the most hydrophobic homologue, the tetradecylbenzene sulfonate, enhances the biogas production. This LAS homologue seems to increase the availability of organic compounds sorbed on the anaerobic sludge promoting their biodegradation.  相似文献   

9.
This paper describes a new analytical method for determination of organophosphorus pesticides (OPs) along with their degradation products involving liquid chromatography (LC) positive ion electrospray (ESI+) tandem mass spectrometry (MS-MS) with selective reaction monitoring (SRM). Chromatography was performed on a Gemini C6-Phenyl (150 mmx2.0 mm, 3 microm) with a gradient elution using water-methanol with 0.1% formic acid, 2 mM ammonium acetate mobile phase at a flow rate of 0.2 mL min(-1). The LC separation and MS/MS operating conditions were optimized with a total analysis time less than 40 minutes. Method detection limits of 0.1-5 microg L(-1) for selected organophosphorus pesticides (OP), OP oxon degradation products, and other degradation products: 3,5,6-trichloro-2-pyridinol (TCP); 2-isopropyl-6-methyl-4-pyrimidol (IMP); and diethyl phosphate (DEP). Some OPs such as fenchlorphos are less sensitive (MDL 30 microg L(-1)). Calibration curves were linear with coefficients of correlation better than 0.995. A three-point identification approach was adopted with area from first selective reaction monitoring (SRM) transition used for quantitative analysis, while a second SRM transition along with the ratio of areas obtained from the first to second transition are used for confirmation with sample tolerance established by the relative standard deviation of the ratio obtained from standards. This new method permitted the first known detection of OP oxon degradation products including chlorpyrifos oxon at Bratt's Lake, SK and diazinon oxon and malathion oxon at Abbotsford, BC in atmospheric samples. Atmospheric detection limits typically ranged from 0.2-10 pg m(-3).  相似文献   

10.
Heterogeneous photocatalytic degradation of three-selected herbicide derivatives: (1) picloram (4-Amino-3,5,6-trichloropyridine-2-carboxylic acid, (2) dicamba (2-Methoxy-3,6-dichlorobenzoic acid, and (3) floumeturon (N,N-Dimethyl-N-[3-(trifluoromethyl)phenyl]-urea) has been investigated in aqueous suspensions of titanium dioxide under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic technique and decrease in total organic carbon (TOC) content as a function of irradiation time under a variety of conditions. The degradation of the herbicide was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO2, and in the presence of electron acceptors such as hydrogen peroxide (H2O2), potassium bromate (KBrO3), and ammonium persulphate (NH4)2S2O8 besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts in the case of dicamba (2) and floumeturon (3), whereas Hombikat UV100 was found to be better for the degradation of picloram (1). The herbicide picloram (1) was found to degrade faster as compared to dicamba (2) and floumeturon (3). The degradation products were analyzed by gas chromatography-mass spectrometry (GC/MS) technique, and plausible mechanisms for the formation of products have been proposed.  相似文献   

11.

Purpose

The major aromatic constituents of petroleum products viz. benzene, toluene, and mixture of xylenes (BTX) are responsible for environmental pollution and inflict serious public concern. Therefore, BTX biodegradation potential of individual as well as formulated bacterial consortium was evaluated. This study highlighted the role of hydrogen peroxide (H2O2), nitrate, and phosphate in stimulating the biodegradation of BTX compounds under hypoxic condition.

Materials and methods

The individual bacterium viz. Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains and a consortium comprising of the above bacteria were inoculated to BTX-containing liquid medium and in soil. The bioremediation experiment was carried out for 120?h in BTX-containing liquid culture and for 90?days in BTX-contaminated soil. The kinetics of BTX degradation either in presence or absence of H2O2, nitrate, and phosphate was analyzed using biochemical and gas chromatographic (GC) technique.

Results

Bacterial consortium was found to be superior in degrading BTX either in soil or in liquid medium as compared to degradation of same compounds by individual strains of the consortium. The rate of BTX biodegradation was further enhanced when the liquid medium/soil was exogenously supplemented with 0.01?% (v/v) H2O2, phosphate, and nitrate. The GC analysis of BTX biodegradation (90?days post-inoculation) in soil by bacterial consortium confirmed the preferential degradation of benzene compared to m-xylene and toluene.

Conclusions

It may be concluded that the bacterial consortium in the present study can degrade BTX compounds at a significantly higher rate as compared to the degradation of the same compounds by individual members of the consortium. Further, addition of H2O2 in the culture medium as an additional source of oxygen, and nitrate and phosphate as an alternative electron acceptor and macronutrient, respectively, significantly enhanced the rate of BTX biodegradation under oxygen-limited condition.  相似文献   

12.
Degradation of aldrin (1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5-8-dimethanonaphthalene), heptachlor (1H-1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano indene), dieldrin (1aalpha,2beta,2aalpha,3beta,6beta,6aalpha,7beta,7aalpha)-3,4,5,6,9,9-Hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7:3,6-d-methanonaphtha[2,3-b]oxirene, and heptachlor epoxide (1aalpha, 1bbeta,2alpha,5alpha,5alphabeta,6beta,6aalpha-2,3,4,5,6,7,7-Heptachloro-1a,1b,5,5a,6,6a-hexahydro-2,5-methano-2H-inden[1,2-b]-oxirene) was tested using free cultures of Pseudomonas fluorescens under controlled conditions. Pesticide concentrations were monitored by gas chromatography during 120 h. Percentages of degradation and biodegradation rates (BDR) were calculated. Data showed a trend suggesting a relation between chemical structure and degradability. Degradation kinetics for each pesticide tested showed that the highest degradation rates were found in the first 24 h. Kinetics data were adjusted to an empirical equation in order to predict their behavior, and the correlation coefficients obtained were satisfactory. Gas chromatography/mass spectrometry (GC/MS) analysis of the final extracts allowed the identification of chlordene and monodechlorodieldrin, which have been reported as final metabolite produced in the biodegradation of this kind of compounds. Regarding adsorption of pesticides on activated vegetal carbon, we concluded that removal efficiencies between 95.45 and 97.18% can be reached, depending on the pesticide and the carbon dose applied. The values for K from the Freundlich equation were quite similar for the four pesticides (between 1.0001 and 1.04), whereas the n values were quite different for each pesticide in the following order of affinity: dieldrin > aldrin > heptachlor epoxide > heptachlor. Equilibrium times, very important for scaling up the process, were between 43 min and 1 h, for the heptachlor epoxide and the heptachlor, respectively.  相似文献   

13.

Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha?1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t 1/2 = 3.7 days), followed by a slower dissipation rate at the end (t 1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

14.
Cheng CY  Wu CY  Wang CH  Ding WH 《Chemosphere》2006,65(11):2275-2281
Concentrations of degradation products of nonylphenol polyethoxylates (NPEOs) were analyzed in river water samples in order to determine the distribution characteristic of these alkylphenolic compounds in 18 major rivers of Taiwan. The degradation products of NPEOs were detected in all river samples, with the dicarboxylates alkylphenolic degradation products (CAPEC) being detected most frequently and at the highest concentrations. Concentrations of NP and NP1EO in rivers ranged from n.d. to 5.1 μg l−1 and n.d. to 0.5 μg l−1, respectively. The total concentrations of shortened carboxylates (i.e., NP1EC + NP2EC + NP3EC) and dicarboxylates alkylphenolic degradation products (CAP1EC + CAP2EC) ranged from n.d. to 63.6 μg l−1 and n.d. to 94.6 μg l−1, respectively. Concentrations of NP2EC, NP3EC and all CAPEC residues were determined semi-quantitatively by comparing with the internal standard. Significantly higher concentrations of CAPEC residues were detected in the river waters as compared to those of NP, NP1EO and NPEC degradation products and the average proportions of these compounds in the samples of the rivers were as follows: NP + NP1EO was 5 ± 2.5%, total NPEC was 25 ± 12%, and total CAPEC was 70 ± 12%. The high concentration ratios of CAPEC/NPEC illustrate that aerobic biodegradation plays a main route in the fate of NPEO in the rivers of Taiwan.  相似文献   

15.
放电等离子体与饲养酵母联合处理味精废水的初步研究   总被引:7,自引:0,他引:7  
对采用放电等离子体与饲养酵母联合处理味精废水进行了初步研究。结果表明,放电等离子体预处理后废水的CODcr值普遍升高,但经假丝酵母联合处理后CODCr去除率增加了38.3%,效果明显优于仅采用饲养酵母法处理的味精废水,说明放电等离子体预处理可使味精废水中的有机大分子破坏成小分子,有利于生物降解,为味精废水治理提供了一条新的途径。实验初步研究了联合处理后的CODcr去除率与预处理电压、预处理电流、预处理次数的关系,结果表明存在相应的最优值。  相似文献   

16.
Edwards C  Graham D  Fowler N  Lawton LA 《Chemosphere》2008,73(8):1315-1321
Microcystin-LR (MC-LR) was readily biodegraded on addition to six different water samples irrespective of their previous exposure to microcystins. Subsequent studies with water from three of these water bodies confirmed the degradation of MC-LR and also demonstrated the biodegradation of MC-LF, nodularin and mixture of microcystins and nodularin. Rates of degradation of MC-LR, MC-LF and NOD in individual water samples ranged from a half-life of 4 to 18d. Analysis by HPLC-PDA-ESI+ and MALDI MS/MS revealed novel intermediate degradation products of MC-LF and nodularin which included demethylation, hydrolysis, decarboxylation and condensation of the parent compound(s). Our study suggests a possible diversity of micro-organisms and/or pathways which has not been previously observed.  相似文献   

17.
Contaminants in settled indoor dust are potentially health hazardous to human. Thus, identification and quantification of toxic chemicals in settled indoor dust is of great concern. In this study, the levels of major anions ( $ \mathrm{C}{{\mathrm{l}}^{-}},\mathrm{N}{{\mathrm{O}}_2}^{-},\mathrm{B}{{\mathrm{r}}^{-}},\mathrm{N}{{\mathrm{O}}_3}^{-},\mathrm{P}{{\mathrm{O}}_4}^{3-}\,\mathrm{and}\,\mathrm{S}{{\mathrm{O}}_4}^{2- } $ ), trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, As and Pb) and polybromodiphenyl ethers (PBDEs) in settled office and home dust were determined and correlations between the contaminants investigated. Depending on the available materials in both microenvironments, the most possible sources were identified. The results showed that the settled office dusts (n?=?6 pooled samples from 85 offices) were more contaminated than home dusts (n?=?8 homes). For anions, $ \mathrm{S}{{\mathrm{O}}_4}^{2- } $ and Cl accounted for 87 and 97 % of the total office and home dust contaminants, respectively. For trace metals, Fe, Cu, Zn and Mn, accounted for 98 % of the contaminants in both office and home dust samples. Fe exhibited the highest percentage of 76.7 and 87.3 % in office and home dust samples, respectively. For PBDEs, the mean concentrations detected in office and home dust ranged between 5.8–86.3 and 1.5–20.6 ng?g?1, respectively. The log-transformed correlation between the total concentrations of trace metals and major anions detected in offices and homes was positive for offices and negative for homes with a statistically significant values (r?=?0.73, p?<?0.01; r?= ?0.22, p?<?0.01, respectively). The daily exposure rates determined for the most hazardous such as As, Cd, Pb and PBDEs congeners, relative to the individual concentrations reported in the literature in settled indoor dust, were found very lower. Therefore, maybe it is possible to expect less potential health risk. Investigation of formation of coordination compounds between trace metals and PBDEs congeners is possible; however, this requires further study.  相似文献   

18.
Wang J  Zhang X  Li G 《Chemosphere》2011,85(4):609-615
Effects of remediation technologies on polar compounds of crude oil in contaminated soils have not been well understood when compared to hydrocarbons. In this study, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize the changes in NSO polar compounds of crude oil and residual oil after long-term natural attenuation, biostimulation and subsequent ozonation following biostimulation of contaminated soils. N1 and O1 species, which were abundant in the crude oil, were selectively biodegraded, and species with higher double bond equivalent values and smaller carbon numbers appeared to be more resistant to microbial alteration. O2-O6 species were enriched by biodegradation and contained a large number of compounds with a high degree of unsaturation. Ozone could react with a variety of polar compounds in residual oil after biodegradation and showed high reactivity with polar species containing aromatic or multi-aliphatic rings, including the residual N1 and O1 species, naphthenic acids and unsaturated O3-O6 compounds. Fatty acids and O3-O8 species dominated by saturated alkyl compounds were resistant to ozonation or the primarily incomplete ozonation products. Principal component analysis of identified peaks in the FT-ICR MS spectra provided a comprehensive overview of the complex samples at the molecular level and the results were consistent with the detailed analysis. Taken together, these results showed the high complexity of polar compounds in residual oils after biodegradation or ozonation in contaminated soil and would contribute to a better understanding of bioremediation and ozonation processes.  相似文献   

19.
Degradation of two model insecticides, diazinon and malathion, and their degradation products 2-isopropyl-6-methyl-4-pyrimidinol--IMP (diazinon hydrolysis product) and malaoxon (malathion oxidation product) was compared and studied in the environment. The pesticides and their metabolites were extracted from samples (water, soil, chicory) with ethyl acetate and subsequently the extracts were analyzed by GC/FID. It was shown that hydrolysis is the major process in the degradation of these pesticides in water. In fact, 95% of diazinon was degraded, and only 10% of malathion was oxidised. In soil 30% of diazinon exposed to the sunlight was decomposed by photolysis, whereas in soil left in the darkness no degradation products were observed. In soil left under environmental conditions, 90% of diazinon was degraded and 40% from its initial concentration was transformed into IMP. The concentrations of the pesticides after 21 days on chicory were under maximal allowable concentration, which is 0.5 ppm for malathion and for diazinon. The concentration of malaoxon was more than twice as high as the allowable value, which is for the sum of malathion and malaoxon 3 ppm.  相似文献   

20.
During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号