首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Personal exposures to viable fungi and bacteria were compared with the concentrations being assessed by stationary samplers in home and workplace microenvironments. A random sample of 81 elementary school teachers in eastern Finland performed two 24-hour measurement periods in wintertime. Concentrations and prevalences of viable fungi and bacteria on the collection filters were determined by cultivation method. The geometric mean concentration was 3-12 cfu m(-3) for total viable fungi, 0.6-3.7 cfu m(-3) for Penicillium and mainly under 1 cfu m(-3) for other fungi. The samples with higher fungal concentrations also had higher diversity of fungi than samples with lower concentrations. The total number of fungal genera recovered was 39 for personal, 34 for home and 23 for work samples. The variation in concentration of Penicillium explained even 25-95% of the variations of total fungal concentration in personal exposure, home and workplace environments. There was an association between personal exposure and home concentration of viable fungi and between personal exposure and home and work concentrations of viable bacteria. Personal exposure and home concentrations of fungi were higher in rural areas than in urban areas. Our results also indicate that presence of a certain fungus in a microenvironment does not necessarily mean similar findings in personal exposure samples.  相似文献   

2.
The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.  相似文献   

3.
Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.  相似文献   

4.
Tube type samplers with two different adsorbents, Chromosorb 106 and Tenax TA, were evaluated by laboratory experiments and field tests for simultaneous diffusive sampling of alpha-pinene, beta-pinene and delta 3-carene and subsequent thermal desorption-gas chromatographic analysis. No statistically significant effects of exposure time, concentrations of monoterpenes or relative humidity were found for samplers with Chromosorb 106 when running a factorial design, with the exception of the adsorption of delta 3-carene, for which some weak effects were noted. Samplers with Tenax TA were affected by the sampling time as well as the concentration for all terpenes, with a strong interaction effect between these two factors. The terpenes showed good storage stability on both adsorbents. No effect of back-diffusion was noted when using Chromosorb 106, while Tenax TA showed some back-diffusion effects. The uptake rates, in ml min-1, for the terpenes on Chromosorb 106 were 0.36 for alpha-pinene, 0.36 for beta-pinene and 0.40 for delta 3-carene. The corresponding average values on Tenax TA were 0.30 for alpha-pinene, 0.32 for beta-pinene and 0.38 for delta 3-carene. The field validation proved that diffusive sampling on Chromosorb 106 agreed well with pumped sampling on charcoal for stationary samples, while the personal samples indicated a discrepancy of 25% between Chromosorb 106 and charcoal samples. Tenax TA generally gave lower results than Chromosorb 106 in all field samples. Samplers packed with Chromosorb 106 could be used to monitor terpene levels in workplaces such as sawmills. The major advantages with this method are the sampling procedure, which is simple to perform compared to other techniques, the easily automated analysis procedure and the possibility to reuse the samplers.  相似文献   

5.
Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM? 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO?) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions calculated from the OPC data are closely correlated with the results of the particle size-selective sampling using the CIP 10. Furthermore, the OPC data allow calculation of the thoracic fraction of workplace aerosol (not measured by sampling), which is interesting in the presence of allergenic particles like fungi spores. The results also show that the modified COP inlet adequately samples inhalable aerosol in the range of workplace particle-size distribution.  相似文献   

6.
Personal aerosol samplers are widely used to monitor human exposure to airborne materials. For bioaerosols, interest is growing in analyzing samples using molecular and immunological techniques. This paper presents a personal sampler that uses a two-stage cyclone to collect bioaerosols into disposable 1.5 ml Eppendorf-type microcentrifuge tubes. Samples can be processed in the tubes for polymerase chain reaction (PCR) or immunoassays, and the use of multiple stages fractionates aerosol particles by aerodynamic diameter. The sampler was tested using fluorescent microspheres and aerosolized fungal spores. The sampler had first and second stage cut-off diameters of 2.6 microm and 1.6 microm at 2 l min(-1)(geometric standard deviation, GSD = 1.45 and 1.75), and 1.8 microm and 1 microm at 3.5 l min(-1)(GSD = 1.42 and 1.55). The sampler aspiration efficiency was >or=98% at both flow rates for particles with aerodynamic diameters of 3.1 microm or less. For 6.2 microm particles, the aspiration efficiency was 89% at 2 l min(-1) and 96% at 3.5 l min(-1). At 3.5 l min(-1), the sampler collected 92% of aerosolized Aspergillus versicolor and Penicillium chrysogenum spores inside the two microcentrifuge tubes, with less than 0.4% of the spores collecting on the back-up filter. The design and techniques given here are suitable for personal bioaerosol sampling, and could also be adapted to design larger aerosol samplers for longer-term atmospheric and indoor air quality sampling.  相似文献   

7.
Bioaerosol sampling by a personal rotating cup sampler CIP 10-M   总被引:1,自引:0,他引:1  
High concentrations of bioaerosols containing bacterial, fungal and biotoxinic matter are encountered in many workplaces, e.g. solid waste treatment plants, waste water treatment plants and sewage networks. A personal bioaerosol sampler, the CIP 10-M (M-microbiologic), has been developed to measure worker exposure to airborne biological agents. This sampler is battery operated; it is light and easy to wear and offers full work shift autonomy. It can sample much higher concentrations than biological impactors and limits the mechanical stress on the microorganisms. Biological particles are collected in 2 ml of liquid medium inside a rotating cup fitted with radial vanes to maintain an air flow rate of 10 l min(-1) at a rotational speed of approximately 7,000 rpm. The rotating cup is made of sterilisable material. The sampled particles follow a helicoidal trajectory as they are pushed to the surface of the liquid by centrifugal force, which creates a thin vertical liquid layer. Sterile water or another collecting liquid can be used. Three particle size selectors allow health-related aerosol fractions to be sampled according to international conventions. The sampled microbiological particles can be easily recovered for counting, incubation or further biochemical analysis, e.g., for airborne endotoxins. Its physical sampling efficiency was laboratory tested and field trials were carried out in industrial waste management conditions. The results indicate satisfactory collection efficiency, whilst experimental application has demonstrated the usefulness of the CIP 10-M personal sampler for individual bioaerosol exposure monitoring.  相似文献   

8.
Diffusive sampling of Volatile Organic Compounds (VOCs) onto thermal desorption tubes, followed by gas chromatography, is an established technique for area or personal monitoring of typical workplace concentrations and there has been increasing interest in extending the application to environmental levels, particularly for benzene, toluene and xylene (BTX). Diffusive sampling rates for BTX on Chromosorb 106 and Carbograph-1 (a graphitised carbon) were measured over periods of 1-4 weeks in field validation experiments using ambient air and parallel pumped sampling (the reference method) at the HSL site in central Sheffield. The reference method was also used to investigate the possible bias of an open-path spectrophotometer (OPSIS) used by Sheffield City Council. A bias for BTX was suspected from results of a two-week initial exercise in which several diffusive samplers were placed close to the light path. In the full field validation of the diffusive samplers carried out subsequently, the significant bias of BTX concentrations reported by OPSIS were confirmed when compared with concurrent results from the reference method. OPSIS gave benzene and toluene values up to eight times higher than expected from the GC measurements. Xylene discrepancies were smaller, but in one 3-day peak episode, OPSIS demonstrated a negative correlation with GC.  相似文献   

9.
A denuder/filter system constructed for solvent-free personal exposure measurements was evaluated for separation of vapour and particulate 4,4'-methylenediphenyl diisocyanate (4,4'-MDI) generated from heated PUR-foam. The two different phases were collected in the denuder and on the filter, respectively, by chemosorption on a polydimethylsiloxane (SE-30)-dibutylamine (DBA) stationary phase. Both repeatability and the total mass concentration of 4,4'-MDI were similar to that obtained from the reference method, in this case an impinger/filter system. The penetration of particles through the denuder at 300 ml min(-1) was nearly 100% in the particle size range 25 to 700 nm, which fits well with the Gormley-Kennedy equation. Denuder/filter sampling of the 4,4'-MDI aerosol at 500 ml min(-1) yielded a phase distribution that was in accordance with the results from the reference method. The method limit of detection was 6 ng m(-3) and 4 ng m(-3) for the denuder and filter, respectively, when using an air sampling flow rate of 300 ml min(-1) and a sampling period of 15 min. This is well below the Swedish occupational exposure limit (OEL) of 50 and 100 microg m(-3) for an 8-hour working day and a 5-min period, respectively.  相似文献   

10.
Monitoring of the workplace concentration of 3-methoxybutyl acetate (MBA), which is used in printer's ink and thinner for screen-printing and as an organic solvent to dissolve various resins, is important for health reasons. An active and a diffusive sampling method, using a gas chromatograph equipped with a flame ionization detector, were developed for the determination of MBA in workplace air. For the active sampling method using an activated charcoal tube, the overall desorption efficiency was 101%, the overall recovery was 104%, and the recovery after 8 days of storage in a refrigerator was more than 90%. For the diffusive sampling method using the 3M 3500 organic vapor monitor, the MBA sampling rate was 19.89 cm(3) min(-1). The linear range was from 0.01 to 96.00 microg ml(-1), with a correlation coefficient of 0.999, and the detection limits of the active and diffusive samplers were 0.04 and 0.07 microg sample(-1), respectively. The geometric mean of stationary sampling and personal sampling in a screen-printing factory were 12.61 and 16.52 ppm, respectively, indicating that both methods can be used to measure MBA in workplace air.  相似文献   

11.
Traditional assessment of occupational exposure to metals typically involves static or personal aerosol sampling on a membrane filter followed by a laboratory determination of the metal content on the filter sample. These techniques give results with high accuracy and low detection limits. However, they all have a drawback in that, since the samples have to be analysed in a laboratory, the results will usually be obtained days or weeks after the sampling took place. Today there is available a new generation of portable electronic micro-balances and instruments for metal analysis based on X-ray fluorescence. These instruments will make on-site measurements of metal exposure possible, which opens the way for new approaches for assessment of occupational exposure to metals. In combination with high-flow pumps, short-term sampling is possible, which allows monitoring of the exposure variation during a work shift as well as the exposure during individual work tasks of short duration. Screening measurements and emission measurements are other examples of monitoring that are facilitated using on-site determinations. Measure control monitoring can effectively be performed using on-site measurements and is an effective tool in the assessment of workplace improvements. On-site determinations can also form an effective and pedagogic tool showing workers how to perform specific tasks and demonstrating the effectiveness of different measures intended to improve their work environment. Other examples are the assessment of skin exposure using aerosol deposition on pads and screening of contamination using bulk samples.  相似文献   

12.
This research evaluated the UNC passive aerosol sampler as a tool to measure particle mass concentrations and size distributions. The exposure scenario represented high concentrations and exposure periods of a few hours. Mass concentrations measured with the passive sampler were compared to concentrations measured using both a dichotomous sampler and an aerodynamic particle sizer (APS). In addition, the size distributions measured with the passive sampler were compared to those measured using the APS. Mass concentrations measured using the dichotomous sampler and the APS agreed well. The passive sampler tracked, but tended to overestimate, mass concentrations measured by the other two instruments. Size distributions measured with the passive sampler followed the general pattern of those measured using the APS. Overall, the passive sampler demonstrated both its utility and its limitations in these tests. The concentration measurements and size distributions found using passive samplers were more variable than those of the other instruments, but generally followed the data taken using the other methods. The advantages of low cost and ease of use offset the limitations in data quality with the passive sampler; these advantages are particularly welcome for sampling situations where aerosol properties vary over space or time.  相似文献   

13.
Continuous, intermittent and passive sampling of airborne VOCs   总被引:1,自引:0,他引:1  
Long sampling periods are often advantageous or required for measuring air quality and characterizing exposures. However, sampling periods exceeding 8 to 24 h using thermally desorbable adsorbent tube (TDT) samplers for the measurement of airborne volatile organic compounds (VOCs) face several challenges, including maintaining stable and low flow rates, and avoiding breakthrough of the adsorbent. These problems may be avoided using intermittent sampling; however, the literature contains few if any reports that have evaluated this technique in environmental, occupational or other applications. The purpose of this study is to evaluate continuous, intermittent and passive sampling methods using both laboratory and real-world tests. Laboratory tests compared continuous and intermittent (active) samplers in a controlled dynamic test gas generation system. Field tests used side-by-side active and passive samplers in an office, home workshop and four smokers' homes. All samples were analyzed for a wide range of VOCs by GC-MS. In most instances, intermittent sampling yielded better reproducibility (duplicate precision of 10 +/- 6%) than continuous low-flow sampling (18 +/- 5%), in part due to difficulty maintaining low flows. Concentrations obtained using intermittent sampling agreed with those for continuous sampling, with downward biases resulting primarily from errors in flow rate measurements. In the field, more VOC species were detected using active rather than passive sampling. Passive measurements were 12% lower than continuous measurements, a difference attributed to declining uptake rates at higher concentrations over the 3 to 4 d sampling period. Overall, most measurements obtained using the three sampling methods agreed within 20% for a wide range of concentrations (0.1 to 230 microg m(-3)). Both passive and intermittent sampling approaches are suitable for long sampling periods, but intermittent sampling provides greater flexibility with respect to sampling period, and permits the use of multi-bed adsorbents that can capture a wider range of VOCs.  相似文献   

14.
Many VOC represent hazards to human health through chronic exposure. Recent European and world-wide legislation proposes limit values for ambient concentrations of these compounds. However, very little experimental data exists for true population exposure. In 1996, the European MACBETH initiative set out to measure population exposure to benzene in six European cities. This study details the French contribution to this program. Six campaigns were carried out, each comprising measurements at 100 outdoor sites and the participation of 50 non-smoking volunteers who wore personal samplers and had passive monitors installed in their homes. Iso-concentration maps were drawn for each campaign and the results showed that outdoor concentrations were significantly lower than indoors. Almost 75% of the volunteers were exposed to mean concentrations higher than the limit value of 5µgm3. It is demonstrated that personal exposure levels cannot be deduced simply by combining indoor and outdoor background concentrations. It is also shown that there is need for better knowledge of the contributions to overall exposure of outdoor microenvironments and the authors hope that future European directives will take this into account.  相似文献   

15.
This article presents the results of carbon disulfide exposure measurements in a Chinese viscose rayon factory. The objectives of the study were to identify the external exposure levels at a large factory and to investigate the 2-thiothiazolidine-4-carboxylic acid (TTCA) concentrations in the urine of the subjects who were exposed to carbon disulfide in the working place atmosphere. The metabolism of carbon disulfide in the exposed subjects was also studied in order to demonstrate the best points in time for the internal exposure sampling. The measurement of the amount of personal exposure to carbon disulfide in the air of the workplace was performed by GC-FPD; the presence of TTCA in the workers urine was analyzed by use of a modified HPLC method. The kinetics of TTCA excretion was studied by analyses at different time-points both during and after exposure to carbon disulfide in the subjects. A total of 155 personal samples were obtained. The carbon disulfide concentration in the staple viscose hall was 13.72 +/- 1.12 mg m-3 in terms of the geometric mean +/- geometric standard deviation, and was 20.05 +/- 1.33 mg m-3 in the filament spinning hall. The TTCA values in the subjects who worked in the staple spinning hall were 1.18 +/- 0.43 mg g-1 creatinine and 1.07 +/- 0.38 mg g-1 creatinine for subjects working in the filament spinning hall. The best time for TTCA sampling is at the end of the working shift, the TTCA excretion was stable for a period of 4-12 h after exposure of the subjects to the carbon disulfide. It might be that the Chinese have different anthropometric characteristics; a sampling bias may therefore appear among different races.  相似文献   

16.
The paper presents a study into air borne respirable dust (ARD) concentration at various workplaces in two open cast chromite mines of Sukinda chromite belt, India. One of these mines is mechanised and the other one is semi-mechanised. The study has been conducted in three phases and ARD concentration has been measured at various workplaces in both the mines. Apart from the determination of ARD concentration, the dust samples collected on filter papers were analysed for hexa-valent chromium by colorimetric method and Cr(VI) direct absorption measurement. In addition, the particle size ranges in ARD have been determined by using cascade impactor fitted onto high volume samplers and laser guided particle size analyser. The paper finally presents a comparison between ARD concentration vis-à-vis the presence of hexa-valent chromium concentration in collected samples of both mechanised and semi-mechanised mines.  相似文献   

17.
Exposure to various chemicals can cause adverse effects to health, such as asthma and allergies, especially in children. Data on personal exposure levels in children are scarce, thus small lightweight diffusive mini-samplers for aldehydes and volatile organic compounds (VOCs) were designed to measure the exposure level of children to these chemicals. The aim of the study was to validate and examine the applicability of these mini-samplers for measuring daily chemical exposure. The diffusive mini-samplers are 20 mm in length, 11 mm in diameter, and 1.67 g in weight. The devices are cylindrically shaped with polytetrafluoroethylene membrane filters placed at each end. To measure aldehydes and acetone, 20 mg of 2,4-dinitrophenylhydrazine was used as an absorbent. To measure VOCs, a carbon molecular sieve was used. The sampling rate for each chemical was determined by parallel sampling with active samplers in a closed exposure bag. The blank levels of the chemicals and the storage stability of the device were tested. The mini-samplers were compared to commercially available diffusive samplers. To examine the applicability of the samplers, 65 elementary school children carried them for 24 h. The sampling rates for formaldehyde, acetaldehyde, and acetone were 20.9, 22.9, and 19.7 mL min(-1), respectively. The limits of quantification (LOQ) for the 24-hour sampling by high-performance liquid chromatography/ultraviolet (HPLC/UV) analysis were 8.3, 7.6, and 8.8 μg m(-3) for formaldehyde, acetaldehyde, and acetone, respectively. The sampling rates for the 11 VOCs were determined and ranged from 3.3 mL min(-1) for styrene and 2-ethyl-1-hexanol to 11.7 mL min(-1) for benzene. The LOQ for the 24-hour sampling by gas chromatography-mass spectrometry (GC-MS) analysis ranged from 5.9-105.2 μg m(-3), 1.1-24.7 parts per billion. The storage stability after 5 days ranged from 94.8 to 118.2%. Formaldehyde, acetone, benzene, and toluene were detected above the LOQ in more than 90% of the children, and the median concentrations were 21.7, 20.9, 10.1, and 21.5 μg m(-3), respectively. This study shows that the diffusive samplers developed were suitable for children to carry and were capable of measuring the children's daily chemical exposure.  相似文献   

18.
The aim of this study was to quantify personal exposure and indoor levels of the suspected or known carcinogenic compounds 1,3-butadiene, benzene, formaldehyde and acetaldehyde in a small Swedish town where wood burning for space heating is common. Subjects (wood burners, n = 14), living in homes with daily use of wood-burning appliances were compared with referents (n = 10) living in the same residential area. Personal exposure and stationary measurements indoors and at an ambient site were performed with diffusive samplers for 24 h. In addition, 7 day measurements of 1,3-butadiene and benzene were performed inside and outside the homes. Wood burners had significantly higher median personal exposure to 1,3-butadiene (0.18 microg m(-3)) compared with referents (0.12 microg m(-3)), which was also reflected in the indoor levels. Significantly higher indoor levels of benzene were found in the wood-burning homes (3.0 microg m(-3)) compared with the reference homes (1.5 microg m(-3)). With regard to aldehydes, median levels obtained from personal and indoor measurements were similar although the four most extreme acetaldehyde levels were all found in wood burners. High correlations were found between personal and indoor levels for all substances (r(s) > 0.8). In a linear regression model, type of wood-burning appliance, burning time and number of wood replenishments were significant factors for indoor levels of 1,3-butadiene. Domestic wood burning seems to increase personal exposure to 1,3-butadiene as well as indoor levels of 1,3-butadiene and benzene and possibly also acetaldehyde. The cancer risk from these compounds at exposure to wood smoke is, however, estimated to be low in developed countries.  相似文献   

19.
Despite strong longitudinal associations between particle personal exposures and ambient concentrations, previous studies have found considerable inter-personal variability in these associations. Factors contributing to this inter-personal variability are important to identify in order to improve our ability to assess particulate exposures for individuals. This paper examines whether ambient, home outdoor and home indoor particle concentrations can be used as proxies of corresponding personal exposures. We explore the strength of the associations between personal, home indoor, home outdoor and central outdoor monitoring site ("ambient site") concentrations of sulfate, fine particle mass (PM(2.5)) and elemental carbon (EC) by season and subject for 25 individuals living in the Boston, MA, USA area. Ambient sulfate concentrations accounted for approximately 70 to 80% of the variability in personal and indoor sulfate levels. Correlations between ambient and personal sulfate, however, varied by subject (0.1-1.0), with associations between personal and outdoor sulfate concentrations generally mirroring personal-ambient associations (median subject-specific correlations of 0.8 to 0.9). Ambient sulfate concentrations are good indicators of personal exposures for individuals living in the Boston area, even though their levels may differ from actual personal exposures. The strong associations for sulfate indicate that ambient concentrations and housing characteristics are the driving factors determining personal sulfate exposures. Ambient PM(2.5) and EC concentrations were more weakly associated with corresponding personal and indoor levels, as compared to sulfate. For EC and PM(2.5), local traffic, indoor sources and/or personal activities can significantly weaken associations with ambient concentrations. Infiltration was shown to impact the ability of ambient concentrations to reflect exposures with higher exposures to particles from ambient sources during summer. In contrast in the winter, lower infiltration can result in a greater contribution of indoor sources to PM(2.5) and EC exposures. Placing EC monitors closer to participants' homes may reduce exposure error in epidemiological studies of traffic-related particles, but this reduction in exposure error may be greater in winter than summer. It should be noted that approximately 20% of the EC data were below the field limit of detection, making it difficult to determine if the weaker associations with the central site for EC were merely a result of methodological limitations.  相似文献   

20.
Miners face a variety of respiratory hazards while on the job, including exposure to silica dust which can lead to silicosis, a potentially fatal lung disease. Currently, field-collected filter samples of silica are sent for laboratory analysis and the results take weeks to be reported. Since the mining workplace is constantly moving into new and often different geological strata with changing silica levels, more timely data on silica levels in mining workplaces could help reduce exposures. Improvements in infrared (IR) spectroscopy open the prospect for end-of-shift silica measurements at mine sites. Two field-portable IR spectrometers were evaluated for their ability to quantify the mass of silica on filter samples loaded with known amounts of either silica or silica-bearing coal dust (silica content ranging from 10-200 μg/filter). Analyses included a scheme to correct for the presence of kaolin, which is a confounder for IR analysis of silica. IR measurements of the samples were compared to parallel measurements derived using the laboratory-based U.S. Mine Safety and Health Administration P7 analytical method. Linear correlations between Fourier transform infrared (FTIR) and P7 data yielded slopes in the range of 0.90-0.97 with minimal bias. Data from a variable filter array spectrometer did not correlate as well, mainly due to poor wavelength resolution compared to the FTIR instrument. This work has shown that FTIR spectrometry has the potential to reasonably estimate the silica exposure of miners if employed in an end-of-shift method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号