首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The accidental spill of volatile solvents or the release of flammable gases within equipment and buildings is likely to form fuel concentration gradients unless efficient mixing is provided. As a consequence, even small amounts of fuel can form flammable clouds, and partial volume deflagrations may occur. Nevertheless, few indications are given in international guidelines for vent sizing and only over-conservative well-mixed stoichiometric assumptions are used. In this paper, we propose a predictive methodology for the evaluation of the dynamics of partial volume deflagration, aiming at defining useful correlations for the design of vent devices, starting from the fundamental equation for the rate of pressure rise and flame propagation in closed vessel. We define a ‘stratified gas deflagration index’ KG(m), where m is the filling ratio, and use it with the most common design equations for vent sizing. The approach has been validated by means of a CFD code for the simulation of stratified laminar methane–air explosion by varying both filling ratio and volume.  相似文献   

2.
This paper presents a model and simulation results for the mitigation of a hydrogen–air deflagration by venting through a duct. A large eddy simulation (LES) model, applied previously to study both closed-vessel, and open atmosphere hydrogen–air deflagrations, was developed further to model a hydrogen–air explosion vented through a duct. Sub-grid scale (SGS) flame wrinkling factors were introduced to model major phenomena which contribute to the increase of flame surface area in vented deflagrations. Simulations were conducted to validate the model against 20% hydrogen–air mixture deflagrations (vent diameters 25 and 45 cm) and 10% hydrogen–air mixture deflagration (vent diameter 25 cm). There was reasonable correlation between the simulations and the experimental data. The comparative importance of different physical phenomena contributing to the flame wrinkling is discussed.  相似文献   

3.
It is indispensable to predict the pressure behavior caused by gas explosions for the safety management against accidental gas explosions. In this study, a simple method for predicting the pressure behavior during gas deflagrations in confined spaces was examined. Previously the pressure behavior was calculated analytically assuming laminar flame propagation. However, the results of this method often provide underestimation compared with experimental data. It was known the underestimation intensifies as the scale of explosion spaces becomes larger. On the large scale gas deflagration, flame instability (especially hydrodynamic instability) might be more effective and wrinkles appeared on the flame front. Then, the flame surface area was increased and the propagating flame was gradually accelerated. The ordinary prediction methods led to the underestimation because the propagating flame was assumed to be laminar. In this study, we considered the effect of flame wrinkles caused by flame instabilities. By regarding the flame front as a fractal structure, the flame surface area could be modified. Because a flame surface starts to be wrinkled on a certain flame radius, proper determination of the critical flame radius provided accurate prediction of pressure behavior on a large scale deflagration. In addition, correction of the KG value in a large vessel was discussed.  相似文献   

4.
A vented chamber, with internal dimensions of 150 mm × 150 mm × 500 mm, is constructed in which the premixed methane–air deflagration flame, propagating away from the ignition source, interacts with obstacles along its path. Three obstacle configurations with different cross-wise positions are investigated. The cross-wise obstacle positions are found to have significant effects on deflagration characteristics, such as flame structure, flame front location, flame speed, and overpressure transients. The rate of flame acceleration, as the flame passes over the last obstacle, is the highest at the configuration with three centrally located obstacles, whereas the lowest is observed at the configuration with three obstacles mounted on one side of the chamber. Compared with the side configuration, the magnitude of overpressure generated increases by approximately 80% and 165% for the central and staggered configurations, respectively. Furthermore, flame propagation speeds and generated overpressures for both the central and staggered configurations are greater, which should to be avoided to reduce the risk associated with turbulent premixed deflagrations in practical processes.  相似文献   

5.
The performance of two reaction rate models based on the laminar flamelet concept have been examined by calculating the behaviour of turbulent flame deflagration inside a semi-confined explosion tube. The models formulate the mean rate of reaction as a function of a transport equation for the flamelet surface density. The difference in the models is in modelling the source/sink terms of the flamelet surface density transport equation. The models are validated using laser diagnostics of flame deflagration in methane–air flammable mixture. The predictions are compared with experimental results for propagation, pressure history and flame speed. Sensitivity to cross-flow effects are investigated through comparison between two- and three-dimensional calculations. The numerically simulated results show that experimental trends are well reproduced by both models.  相似文献   

6.
The methods used to evaluate the consequences of a vapor cloud explosion assume deflagrations within congested process pipework regions and consequently a significant effort has been invested in developing models to estimate the severity of these deflagrations. Models range from the simpler screening approaches to detailed Computational Fluid Dynamics. There is clear evidence from large scale experiments and incidents that transition from deflagration to detonation is credible and has occurred and it is the contention of this paper that deflagration is only the first stage in many major vapor cloud explosions and that detonation is readily foreseeable. Why does this matter? The methods currently used in the design and location of buildings on and around process sites are based on an incomplete picture of vapor cloud explosions. Whilst this might not have a significant effect in some cases, it is shown that there is the potential to significantly underestimate the explosion hazard. This will result in occupied buildings either being placed in the wrong location or under-designed for the explosion threat, increasing the risks to personnel on these sites.  相似文献   

7.
The nature of coherent deflagration phenomena in a vented enclosure-atmosphere system is analysed. The study is based on experimental observations of SOLVEX programme in the empty 547-m3 vented enclosure and consequent analysis of the same test by large eddy simulations (LES). A comparison between simulated and experimental pressure transients and dynamics of flame front propagation inside and outside the enclosure gave an insight into the nature of the complex simultaneous interactions between flow, turbulence and combustion inside the enclosure and in the atmosphere. It is revealed through LES processing of experimental data that the substantial intensification of premixed combustion occurs only outside the empty SOLVEX enclosure and this leads to steep coherent pressure rise in both internal and external deflagrations. The external explosion does not affect burning rate inside the enclosure. There is only one ad hoc parameter in the LES model, which is used to account for unresolved subgrid scale increase of flame surface density outside the enclosure. The model allows reaching an excellent match between theory and experiment for coherent deflagrations in the empty SOLVEX facility. The mechanism of combustion intensification in the atmosphere is discussed and the quantitative estimation of the model ad hoc parameter is given.  相似文献   

8.
Dust explosions continue to pose a serious threat to the process industries handling combustible powders. According to a review carried out by the Chemical Safety Board (CSB) in 2006, 281 dust explosions were reported between 1980 and 2005 in the USA, killing 119 workers and injuring 718. Metal dusts were involved in 20% of these incidents. Metal dust deflagrations have also been regularly reported in Europe, China and Japan.The term “metal dusts” encompasses a large family of materials with diverse ignitability and explosibility properties. Compared to organic fuels, metal dusts such as aluminum or magnesium exhibit higher flame temperature (Tf), maximum explosion pressure (Pmax), deflagration index (KSt), and flame speed (Sf), making mitigation more challenging. However, technological advances have increased the efficiency of active explosion protection systems drastically, so the mitigation of metal dust deflagrations has now become possible.This paper provides an overview of metal dust deflagration suppression tests. Recent experiments performed in a 4.4 m3 vessel have shown that aluminum dust deflagrations can be effectively suppressed at a large scale. It further demonstrates that metal dust deflagrations can be managed safely if the hazard is well understood.  相似文献   

9.
A set of 34 experiments on vented hydrocarbon–air and hydrogen–air deflagrations in unobstructed enclosures of volume up to 4000 m3 was processed with use of the advanced lumped parameter approach. Reasonable compliance between calculated pressure–time curves and experimental pressure traces is demonstrated for different explosion conditions, including high, moderate, low and extremely low reduced overpressures in enclosures of different shape (Lmax:Lmin up to 6:1) with different type and position of the ignition source relative to the vent, for near-stoichiometric air mixtures of acetone, methane, natural gas and propane, as well as for lean and stoichiometric hydrogen–air mixtures. New data were obtained on flame stretch for vented deflagrations.The fundamental Le Chatelier–Brown principle analog for vented deflagrations has been considered in detail and its universality has been confirmed. The importance of this principle for explosion safety engineering has been emphasized and proved by examples.A correlation for prediction of the deflagration–outflow interaction number, χ/μ, on enclosure scale, Bradley number and vent release pressure is suggested for unobstructed enclosures and a wide range of explosion conditions. Fractal theory has been employed to verify the universality of the dependence revealed of the deflagration–outflow interaction number on enclosure scale.In spite of differences between the thermodynamic and kinetic parameters of hydrocarbon–air and hydrogen–air systems, they both obey the same general regularities for vented deflagrations, including the Le Chatelier–Brown principle analog and the correlation for deflagration–outflow interaction number.  相似文献   

10.
To restrict the progress of the global warming, A2L refrigerants such as 2,3,3,3-tetrafluoroprop-1-ene (R1234yf), (Z/E)-1,3,3,3-tetrafluoroprop-1-ene (R1234ze), and difluoromethane (R32) have been expected of alternatives to the standard refrigerants currently in use. The ignition hazard of A2L refrigerants under plausible accident situations in service and maintenance was examined experimentally for two cases: leakage of an A2L refrigerant from a pinhole in a pipe or hose (Scenario 1), and leakage of an A2L refrigerant into an item of equipment used for service and maintenance, such as a collection device (Scenario 2). In Scenario 1, the location of the flammable zone and the possibility of a jet flame being formed instantaneously on contact with an ignition source were examined. Even when R1234yf leaked from a 4 mmϕ pinhole (corresponding to breakage of a pipe), the flammable zone extended only about 10 cm from the pinhole in the downstream region. In an ignition test with a continuous spark as the ignition source, a pale emission appeared only near the spark, and the flame did not propagate to the rest of the refrigerant jet. In Scenario 2, the accumulation and ignition behaviors of A2L refrigerants in a model collection device were examined experimentally. Ignition and flame propagation occurred in a test on a model collection device lacking slits, whereas when slits wider than 20 mm were present, ignition and flame propagation did not occur. Even if R1234yf leaked into the model collection device, provided that slits of an effective width were present, the R1234yf could diffuse through slits and barely accumulated, and no ignition or flame propagation occurred.  相似文献   

11.
Innovative vent sizing technology is presented for explosion safety design of equipment at atmospheric and elevated initial pressures. Unified correlations for vent sizing are suggested. They are modifications of previously reported correlations verified thoroughly for experimental data on vented gaseous deflagrations under different conditions but only at initial atmospheric pressure. Suggested correlations are based on experimental data on vented deflagrations of quiescent and turbulent propane–air mixtures at initial pressures up to 0.7 MPa. Typical values of turbulence factor and deflagration–outflow interaction number are obtained for experimental vented deflagrations at initial pressures higher than atmospheric.

“Blind” examination of new vent sizing technology on another set of experiments with methane–air and propane–air mixtures has shown that predictions by suggested vent sizing technology are better than by the NFPA 68 guide for “Venting of Deflagrations”.

In the development of recently reported results for initial atmospheric pressure it has been concluded that the innovative vent sizing technology is more reliable compared to the NFPA 68 guide at elevated initial pressures as well. Moreover it is crucial that the calculation procedure remains the same for arbitrary deflagration conditions.  相似文献   


12.
HFC32 is a potential alternative refrigerant with excellent thermal performance, but the flammability is a main obstacle for its applications. The group contribution method is utilized to analyze the inhibition efficiency of nonflammable refrigerants in binary mixtures. Furthermore, a novel equation of predicting the minimum inerting concentration of nonflammable refrigerants has been proposed by analyzing the variation of the flame propagation velocity and the flammable refrigerant concentration. Experimental studies of the explosion limits of HFC125/HFC32, HFC227ea/HFC32 and HFC13I1/HFC32 were carried out and the ranges of explosion limits were obtained. At the same time, the relationship between the maximum charge of the flammable refrigerants and lower flammability limit (LFL) was analyzed. The result demonstrates that the proposed novel theoretical equation can effectively predict the minimum inerting concentration of nonflammable refrigerants to flammable refrigerants, and the theoretical results have significance on the security application of the binary mixtures.  相似文献   

13.
The future widespread use of hydrogen as an energy carrier brings in safety issues that have to be addressed before public acceptance can be achieved. The prediction of the consequences of a major accident release of hydrogen into the atmosphere or the contamination of high-pressure hydrogen storage facilities by air entrainment requires a good knowledge of the explosion parameters of hydrogen–air mixtures. The present paper reviews and comments on the current knowledge of dynamic parameters of hydrogen detonation for hazard assessment. The major problem that remains to be resolved involves the understanding of the effect of turbulence on the cellular detonation structure, the propagation of high-speed deflagrations and the transition from deflagration to detonations. It is recommended that future research should be aimed towards experiments that permit the quantitative understanding of the mechanisms of high-speed turbulent combustion rather towards large-scale tests in complex geometries where minimal quantitative information of fundamental significance could be extracted. In spite of its wide flammability and sensitivity to ignition and detonation initiation, it is felt that hydrogen can be produced, stored and handled safely with the appropriate considerations in the design of the hydrogen facilities.  相似文献   

14.
This paper aims to develop quantitative insights based on measured deflagration parameters of hybrid mixtures of activated carbon (AC) dust and hydrogen (H2) gas in air. The generated experimental evidence is used to reject the claim of the null hypothesis (H0) that severity of deflagrations of H2/air mixtures always bound the severity of deflagrations of heterogenous combustible mixtures of AC dust/H2/air containing the same H2 concentrations as in the H2/air binaries. The core insights of this investigation show that the maximum deflagration pressure rise (ΔPMAX) and maximum rate of pressure rise ((dP/dt)MAX) of this hybrid mixture are greater than those corresponding to deflagrations of H2/air mixtures for all the dust and H2 concentrations being examined. The deflagration severity indices (KSt and ES) of the hybrid mixture containing 29 mol% H2 are found to be greater than those of the H2/air mixture containing 29 mol% H2. Also, the minimum explosible concentration (MEC) of the hybrid mixture is lower than that of the AC dust in air only. The insights gained should lead to better realization of the severity of a postulated safety-significant accident scenario associated with on-board cryoadsorption H2 storage systems for fuel-cell (FC) powered light-duty vehicles. The identified insights could also be relevant to other industrial processes where combustible dusts are generated in the vicinity of solvent vapors. Moreover, these insights should be useful for supporting quantitative risk assessment (QRA) of on-board H2 storage systems, designing improved safety measures for cryoadsorption H2 storage tanks, and guiding H2 safety standards and transportation regulations.  相似文献   

15.
Analytical models or abacus are of importance to predict explosion effects in open and congested areas for industrial safety reasons. The goal of this work is to compare overpressure and flame speed values of small-scale deflagration experiments to predicted values from the TNO multi-energy (TNO ME) method and the Baker-Strehlow-Tang (BST) method. Experiments were performed in cylindrical congested volumes of hydrogen – air mixtures varying from 1.77 L to 7.07 L. The reactivity was controlled by the equivalence ratio of hydrogen-air mixtures, ranging from 0.5 to 2.5. The congestion was realized with varying numbers of grid layers and configurations. The influence of the obstacle density and the importance of the mixture reactivity to choose the strength index in order to predict the effects of an explosion has been highlighted for the TNO ME method. Predictive flame speed values from the BST method are in accordance with almost half of the experimental results and the method is conservative in most tested configurations. The use of the TNO ME method has been validated on a small-scale experiment to predict maximal overpressures generated by the deflagration of medium and large-scale H2/air clouds.  相似文献   

16.
Safety studies for production and use of hydrogen reveal the importance of accurate prediction of the overpressure effects generated by delayed explosions of accidental high pressure hydrogen releases. Analysis of previous experimental work demonstrates the lack of measurements of turbulent intensities and lengthscales in the flammable envelope as well as the scarceness of accurate experimental data for explosion overpressures and flame speeds. AIR LIQUIDE, AREVA STOCKAGE ENERGIE and INERIS join in a collaborative project to study un-ignited and ignited high pressure releases of hydrogen.The purpose of this work is to map hydrogen flammable envelopes in terms of concentration, velocity and turbulence, and to characterize the flame behaviour and the associated overpressure. These experimental results (dispersion and explosion) are also compared with blind FLACS modelling.  相似文献   

17.
Correlating turbulent burning velocity to turbulence intensity and basic flame parameters-like laminar burning velocity for dust air mixtures is not only a scientific challenge but also of practical importance for the modelling of dust flame propagation in industrial facilities and choice of adequate safety strategy. The open tube method has been implemented to measure laminar and turbulent burning velocities at laboratory scale for turbulence intensities in the range of a few m/s. Special care has been given to the experimental technique so that a direct access to the desired parameters was possible minimising interpretation difficulties. In particular, the flame is propagating freely, the flame velocity is directly accessible by visualisation and the turbulence intensity is measured at the flame front during flame propagation with special aerodynamic probes. In the present paper, those achievements are briefly recalled. In addition, a complete set of experiments for diametrically opposed dusts, starch and aluminium, has been performed and is presented hereafter. The experimental data, measured for potato dust air mixtures seem to be in accordance with the Bray Gülder model in the range of 1.5 m/s<u′<3.5 m/s. For a further confirmation, the measurement range has been extended to lower levels of turbulence of u′<1.5 m/s. This could be achieved by changing the mode of preparation of the dust air mixture. In former tests, the particles have been injected into the tube from a pressurised dust reservoir; for the lower turbulence range, the particles have been inserted into the tube from above by means of a sieve–riddler system, and the turbulence generated from the pressurised gas reservoir as before. For higher levels of turbulence, aluminium air mixtures have been investigated using the particle injection mode with pressurised dust reservoir. Due to high burning rates much higher flame speeds than for potato dusts of up to 23 m/s have been obtained.  相似文献   

18.
19.
为评估城市天然气管道泄漏连锁爆燃事故后果,基于计算流体力学(CFD)方法构建穿越城市区域的天然气管道泄漏连锁爆燃后果预测与评估模型,以某城市生活区域为例,在城市生活区域建筑物内风场流动计算的基础上,模拟风场作用下可燃气体在城市建筑物空间内的运移规律,预测可燃气云的积聚区域;考虑意外点火的情况,计算城市生活区域内可燃气云爆燃灾害特征,预测爆燃超压、热辐射和高温的影响。研究结果表明:由于建筑物之间的阻挡与反射作用,建筑物下风向有明显的低风速区域,并在一定时间段后扩散过程趋于稳定;在爆燃火焰作用下,高温和热辐射会造成建筑物部分钢结构发生失效变形。  相似文献   

20.
The flammability of refrigerants is a major cause of refrigerant explosion incidents. Studying the explosion characteristics of refrigerants at different initial temperatures can provide significant benefits for solving the safety problems of refrigerants under actual working conditions. This paper studied the effects of the initial temperature and refrigerant concentration on the explosion characteristics of refrigerant 2, 3, 3, 3-tetrafluoropropene (R1234yf) at 0.1 MPa. The curves of explosion characteristics with different initial temperature revealed the same variation trend ranged from 25 °C to 115 °C. Specifically, as the refrigerant concentration was raised, the peak overpressure, the maximum rate of pressure rise, and laminar burning velocity increased initially and decreased afterwards, along with maximum values at the refrigerant concentration of 7.6%. When the refrigerant concentration was 7.6%, the peak overpressure declined exponentially with the initial temperature rise, while the maximum rate of pressure rise increased linearly. The laminar burning velocity calculated from the spherical expansion method indicated that the flame propagation was gradually accelerated by the increase of initial temperature, which coincided with the change of the maximum rate of pressure rise. Meanwhile, experiments and CHEMKIN simulation results demonstrated the effects of elevated temperature from 20 °C to 50 °C on the explosion limits of R1234yf. The lower explosion limit reduced and the upper explosion limit increased with rising initial temperature. In general, R1234yf exhibited moderate combustion and lower explosion risk, compared with traditional refrigerants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号