首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Explosion flame propagation characteristics and overpressure distribution of low density polyethylene (LDPE) dust and ethylene hybrid mixture were investigated under N2 inerting conditions using a custom-designed 12 L cylindrical explosion tank. The results showed that a small amount of ethylene could promote the explosion characteristics of LDPE dust. N2 inerting had different inhibitory effects on the explosion flame of LDPE dust and its mixture with ethylene. The explosion overpressure strength of the LDPE dust/ethylene hybrid mixture decreased with increasing N2 concentration. The overall suppression effect of N2 on the explosion overpressure of the LDPE dust was better than that of the LDPE dust/ethylene hybrid mixture explosion. As the ethylene concentration increased from 0% to 2.5%, the limiting oxygen concentration decreased by 13% oxygen. This small amount of ethylene restricted the traditional inerting process. The study conclusions can provide further scientific basis for the inerting and explosion proofing design of production process equipment involving LDPE dust.  相似文献   

2.
Experiments on the flame propagation of starch dust explosion with the participation of ultrafine Mg(OH)2 in a vertical duct were conducted to reveal the inerting evolution of explosion processes. Combining the dynamic behaviors of flame propagation, the formation law of gaseous combustion products, and the heat dissipation features of solid inert particles, the inerting mechanism of explosion flame propagation is discussed. Results indicate that the ultrafine of Mg(OH)2 powders can cause the agglomeration of suspended dust clouds, which makes the flame combustion reaction zone fragmented and forms multiple small flame regions. The flame reaction zone presents non-homogeneous insufficient combustion, which leads to the obstruction of the explosion flame propagation process and the obvious pulsation propagation phenomenon. As the proportion of ultrafine Mg(OH)2 increases, flame speed, flame luminescence intensity, flame temperature and deflagration pressure all show different degrees of inerting behavior. The addition of ultrafine Mg(OH)2 not only causes partial inerting on the explosion flame, but also the heat dissipation of solid inert particles affects the acceleration of its propagation. The explosion flame propagation is inhibited by the synergistic effect of inert gas-solid phase, which attenuates the risk of starch explosion. The gas-solid synergistic inerting mechanism of starch explosion flame propagation by ultrafine Mg(OH)2 is further revealed.  相似文献   

3.
Explosion prevention is vital for process safety and daily life. In practice, inerting is viewed as an ideal method to reach basic explosion prevention as well as to diminish flammability risk in normal operation, storage, and transportation of materials. This study deals with the inerting effect on the explosion range for methane via grey entropy model, comparatively detected under the different inert gases of nitrogen (N2), argon (Ar), and carbon dioxide (CO2), which have various loading inerting concentrations: 10 (90 vol% air), 20 (80 vol% air) and 25 vol% (75 vol% air). The inert influences were determined via the experimental 20-L-apparatus investigations under 1 atm, 30 OC, combined with the grey entropy model, which is one of the most prevailingly used grey system theories for weighting analysis and decision-making of the fire and explosion assessment for practical operations. The results indicated that CO2 had better inerting capacity than the others, as derived from our grey entropy theoretical soft computing calculations. Through the combination of the grey entropy weighting analysis model and the flammability investigations in this study, the concluded decision-making was feasible and useful for the practical applications of inert gases for preventing fire and explosion hazards in relevant processes.  相似文献   

4.
In this study, experimental determination and modelling investigations for the explosion regions of 1,3-dioxolane/inert gas/N2O and 1,3-dioxolane/inert gas/air mixtures were carried out and compared. The experimental measurements were carried out at 338 K and atmospheric pressure according to EN1839 method T using the inert gases N2, CO2, He and Ar. The results showed that the ratio of the lower explosion limit in N2O (LELN2O) to the lower explosion limit in air (LELair) is 0.52 and the ratio of the maximum oxygen content in air (MOCair) to the limiting oxidizer fraction in nitrous oxide (LOFN2O) is 0.36 ± 0.02 independent of the inert gas. When comparing the inert gas amount at the apex based on the pure oxidizing component, which is O2 in case of air, N2O-containing mixtures need less inert gas to reach the limiting oxidizer quantity whereas the efficiency of inert gases is in the same order. The coefficients of nitrogen equivalency however were found to differ to some extent. The explosion regions of 1,3-dioxolane/inert gas/oxidizer mixtures were modelled using the calculated adiabatic flame temperature profile (CAFTP) method as well as corrected adiabatic flame temperatures. The results indicate good agreement with experimental data for CO2, N2 and Ar- containing mixtures. The noticeable deviations that occur when He is the inert gas are due to the lacking transport data of that mixture.  相似文献   

5.
The effect of CaCO3 powder, a typical inert dust, on the flame spread characteristics of wood dust layers was studied using an experimental device to understand the ignition characteristics of and develop inert explosion-proof technology for deposited wood dust. The results showed that the flame spread velocity (FSV) of the mixed dust layer was affected by the dispersion effect of CaCO3 powder and physical heat absorption. As the CaCO3 powder mass fraction increased, the FSV of the dust layer first increased and then decreased, reaching a peak at a 50% mass fraction. Moreover, the front-end temperature of the flame gradually decreased, and the red spark faded. The combustion reaction of the mixed dust layer could be more completed, and the colour of the combustion residue changed from charcoal black to charcoal grey. The coupling effect of the initial temperature and wind speed can promote an increase in the FSV in the mixed dust layer. The Gauss–Amp model of the FSV of the wood dust layer and mass fraction of CaCO3 powder showed that the peak of the FSV occurred when the mass fraction of CaCO3 powder was between 40 and 50%. Thus, a good inerting and explosion-proof effect can be achieved by using CaCO3 powder with a mass fraction of more than 50%; it can improve the whole inerting process. Inert explosion-proof technology should be considered when assessing fire and explosion risk of dust in real process industry situations.  相似文献   

6.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

7.
The flammability characteristics of refrigerants are affected by environmental factors, making them prone to flammability and explosion accidents in cooling systems. In this paper, the flammability characteristics of R1234yf–air mixtures with N2 and CO2 were investigated comparatively at temperatures between 20 and 50 °C at 80% relative humidity. The lower and upper flammability limits of R1234yf were measured. The limiting oxygen concentration (LOC), critical flammable ratio (CFR), and critical flammable concentration (CFC) of the R1234yf–air mixtures with inert gases were investigated. The paper developed a linear formula between the flammability limit of R1234yf and the temperature. The changes in CFC with different temperatures were negligible for R1234yf. Furthermore, the mixed refrigerant had both non-flammability and the lowest vapor pressure when the CFR of the R1234yf/CO2 mixture was 2.9. The experimental results were used to propose a new prediction model to estimate the flammability limits of R1234yf. Finally, molecular simulation explained the effect of inert gases on the flammability of R1234yf from a microscopic point of view. The research aimed to provide valid evidence and data for preventing flammable and explosive refrigerant incidents.  相似文献   

8.
为了研究R290制冷剂惰化燃爆特性,采用带搅拌功能和氧浓度在线测定的20L球试验装置,对R290制冷剂进行了极限氧浓度测定。实验测定了丙烷在CO2和N2惰化气氛中的爆炸极限及极限空气浓度LAC,确定丙烷的极限氧浓度LOC;采用三元图爆炸区、丙烷-O2二维图爆炸区和ASTM标准分布图分析了混合气体爆炸区边界的燃爆特征,给出了极限氧浓度的确定方法和边界爆炸压力分布规律。实验结果表明:常温常压下R290的爆炸极限为2.1%~9.6%,CO2惰化气氛中的极限氧浓度为13.3%,对应的丙烷浓度为3.3%;N2惰化气氛中的极限氧浓度为10.8%,对应的丙烷浓度为2.7%。通过对比分析不同CO2和N2浓度下的爆炸区分布特征,表明CO2对丙烷的惰化效果要优于N2,以氮气和二氧化氮体积分数比为1∶2测试惰化气氛保护能力,惰化效果介于同浓度单种惰性气体之间。  相似文献   

9.
The global increase in the use of, and reliance on, plastics has prompted the demand for acrylonitrile-butadiene-styrene (ABS) resin in various fields. With this increased requirement, numerous failures have occurred in the ABS process. Those incidents, resulting from electrostatic discharge, powder accumulation, heat accumulation, construction sparks, and plant fires, have caused dust fire and explosions.In this study, the ABS resin was gleaned from the site and tested for its explosion parameters, including minimum ignition temperature of dust cloud (MITC), minimum ignition energy (MIE), and minimum explosion concentration (MEC). To improve loss prevention in the manufacturing process, ferric oxide (Fe2O3) as an inert additive was added in the ABS powder. According to the MIE test, Fe2O3 has an apparent inhibiting effect on dust explosion for the ABS dust. With the proportion of Fe2O3 increased from 25 to 50 mass% in ABS, the MIE increased from 67 to 540 mJ. The explosion tests via 20-L apparatus indicated that Fe2O3 mixed with ABS could not increase the MEC significantly. However, the explosion pressure dropped by increasing in the ratio of Fe2O3 in ABS. This inerting strategy of ABS was deemed to substantially lessen the probability and severity of fire and explosion.  相似文献   

10.
Experimental studies were done with a small pipe with a diameter of 0.043 m and a large pipe with a diameter of 0.49 m to demonstrate the flame propagation suppression with inertia isolation in a long duct. Tests were carried in an ignition section containing propylene/air mixture near stoichiometric concentration and generating a peak flame propagation speed of approximately 100 m/s. The ignition section is connected to a section filled with an inert gas, another section with flammable mixtures, and finally a sufficiently long, ambient section to accommodate flame propagation. The critical length of the inert gas section required for successful suppression of flame from the igniting the flammable section is found to be 0.6 m for CO2 and 0.9 m for N2 in the large pipe and 0.2 m for CO2 and 0.3 m for N2 in the small pipe. Additional tests with a 3 m of ignition section and peak flame propagation speed of 225 m/s showed that the critical length for successful suppression by CO2 is only increased slightly to 0.9 m, confirming that the suppression is a result of inertia isolation rather than inert gas dilution. Finally, application of the results in responding to large-scale leak into a long, underground duct is discussed.  相似文献   

11.
为探究超细粉体惰化剂对铝合金抛光伴生粉尘爆炸特性的影响规律,利用标准化实验装置及自行搭建的实验平台,在对爆炸基本参数进行测试的基础上,分别研究超细CaCO3粉体对抛光废弃物粉尘点燃敏感度的钝化作用以及对爆炸火焰传播进程的惰化效果,并在相同条件下与同等粒径高纯度铝粉的实验效果进行比对。研究结果表明:铝合金抛光废弃物粉尘最小点火能量为280 mJ,而同等粒径高纯度铝粉最小点火能量为35 mJ;在铝合金抛光废弃物粉尘质量浓度为300 g/m3条件下,发生爆炸的火焰传播速度峰值为7.4 m/s,约为高纯度铝粉的57%,铝合金抛光废弃物粉尘的爆炸敏感度及猛烈度均低于高纯度铝粉;当超细CaCO3粉体的惰化比为30%时,可将铝合金抛光废弃物粉尘的最小点火能量钝化至约1 J,爆炸火焰失去持续传播能力,惰化作用效果充分显现。  相似文献   

12.
In this work, vinyltriethoxysilane (A151) and 3-aminopropyltriethoxysilane (KH550) were used to modify ammonium polyphosphate (APP), showing that the dispersibility of APP could be improved remarkably by A151 and KH550. The maximum explosion pressure of aluminum dust explosion decreased with the addition of APP, A151-APP (APP-A) and KH550-APP (APP-B), with the exception of the case where the inerting ratio (α) of APP-A was less than 0.4. After the addition of APP-B, there was little difference in flame propagation behavior and explosion pressure compared with that of adding APP, indicating that APP-B could retain the inhibition performance of APP compared with APP-A. When the inerting ratios of APP, APP-A and APP-B were 1.2, 1.4 and 1.4, respectively, the aluminum dust explosion could be completely inhibited. The explosion residues of aluminum dust/APP mainly consisted of Al2O3, P-containing and N-containing compounds. It could be analyzed that APP exerted the inhibition effect through both chemical and physical effects.  相似文献   

13.
To investigate the effect of Al2O3 particle size on an aluminum explosion, the overpressure and flame velocity in a vertical duct were evaluated. The results show that the inhibitory effect of submicron Al2O3 is best, while the inhibitory effect increases with increasing inerting ratio. However, the inhibitory effect of micron Al2O3 does not increase significantly after the inerting ratio exceeds 40%. For high-concentration aluminum powder, 0.8 μm Al2O3 with an inerting ratio less than 20% promotes aluminum explosion. As the inerting ratio increases beyond 20%, however, the overpressure decreases. Furthermore, Al2O3 inhibits the formation of the intermediate product AlO and decreases the flame brightness. As the inerting ratio of 0.8 μm Al2O3 reaches 50%, the white patches in the flame image disappear. The results of scanning electron microscopy showed that the explosion products agglomerate and some dot-like protrusions appear on the surface of the unburned aluminum particles. The inhibition mechanism was qualitatively investigated. Physical heat absorption is proven to play a limited role. Thermal radiation and chemical inhibition play a key role. The chemical effect mainly influences the surface reaction energy source.  相似文献   

14.
The explosion characteristics of anthracite coal dust with/without small amount of CH4 (1.14 vol %) were investigated by using a 20 L spherical explosion apparatus with an emphasis on the roles of oxygen mole fraction and inert gas. Two methods based on overpressure and combustion duration time were used to determine the minimum explosion concentration (MEC) or the lower explosion limit (LEL) of the pure anthracite coal dust and the hybrid coal-methane mixtures, respectively. The experiment results showed that increasing oxygen mole fraction increases the explosion risk of coal dust: with increasing oxygen mole fraction, the explosion pressure (Pex) and the rate of explosion pressure rise ((dp/dt)ex)) increase, while MEC decreases. The explosion risk of anthracite dust was found to be lower after replacing N2 with CO2, suggesting that CO2 has a better inhibition effect on explosion mainly due to its higher specific heat. However, the addition of 1.14% CH4 moderates the inhibition effect of CO2 and the promotion effect of O2 on anthracite dust explosion for some extent, increasing explosion severity and reducing the MEC of anthracite dust. For hybrid anthracite/CH4 mixture explosions, Barknecht's curve was found to be more accurate and conservative than Chatelier's line, but neither are sufficient from the safety considerations. The experimental results provide a certain help for the explosion prevention and suppression in carbonaceous dust industries.  相似文献   

15.
Coal dust explosion is one of the serious accidents in the coal industry. It is of great significance to study the flame suppression of coal dust explosions. In this paper, a novel active component NiB with amorphous structure for explosion suppression was synthesized by the chemical reduction method. Furthermore, the novel explosion suppressant NiB/Hβ-Al2O3 was prepared through the kneading method by loading novel amorphous NiB nanoparticles on Hβ-Al2O3 with the micro-mesoporous structure as the carrier. The morphology and structure of NiB/Hβ-Al2O3 were characterized by XRD, BET, SEM, and FTIR, which showed that the NiB/Hβ-Al2O3 has proper pore structure and NiB nanoparticles are uniformly distributed as active components for explosion suppression in suppressant. Hartmann tube was used to evaluate the inhibition of coal dust deflagration. The results showed that the flame propagation distance and velocity decreased with the increase of the explosion suppressant. When the addition of explosion suppressant was 30 wt%, the explosion of coal dust was suppressed effectively. Furthermore, combing with the analysis results of the products after coal dust deflagration, the physical and chemical inhibition mechanism of the novel NiB/Hβ-Al2O3 explosion suppressant on coal dust deflagration was put forward.  相似文献   

16.
This paper experimentally investigated the relation between the minimum ignition energy (MIE) of magnesium powders as well as the effect of inert nitrogen (N2) on the MIE. The modified Hartmann vertical-tube apparatus and four kinds of different-sized pure magnesium powders (median particle size, D50; 28.1 μm–89.8 μm) were used in this study. The MIE of the most sensitive magnesium powder was 4 mJ, which was affected by the powder particle size (D50; 28.1 μm). The MIE of magnesium powder increased with an increase in the N2 concentration for the inerting technique. The magnesium dust explosion with an electrostatic discharge of 1000 mJ was suppressed completely at an N2 concentration range of more than 98%. The experimental data presented in this paper will be useful for preventing magnesium dust explosions generated from electrostatic discharges.  相似文献   

17.
Experiment-based investigations of magnesium dust explosion characteristics   总被引:1,自引:0,他引:1  
An experimental investigation was carried out on magnesium dust explosions. Tests of explosion severity, flammability limit and solid inerting were conducted thanks to the Siwek 20 L vessel and influences of dust concentration, particle size, ignition energy, initial pressure and added inertant were taken into account. That magnesium dust is more of an explosion hazard than coal dust is confirmed and quantified by contrastive investigation. The Chinese procedure GB/T 16425 is overly conservative for LEL determination while EN 14034-3 yields realistic LEL data. It is also suggested that 2000-5000 J is the most appropriate ignition energy to use in the LEL determination of magnesium dusts, using the 20 L vessel. It is essential to point out that the overdriving phenomenon usually occurs for carbonaceous and less volatile metal materials is not notable for magnesium dusts. Trends of faster burning velocity and more efficient and adiabatic flame propagation are associated with fuel-rich dust clouds, smaller particles and hyperbaric conditions. Moreover, Inerting effectiveness of CaCO3 appears to be higher than KCl values on thermodynamics, whereas KCl represents higher effectiveness upon kinetics. Finer inertant shows better inerting effectiveness.  相似文献   

18.
The explosion characteristics of propane–diluent–air mixtures under various temperatures and pressures were investigated using a 20-L apparatus. The explosion limits of propane diluted with nitrogen or carbon dioxide were measured at high temperatures from 25 to 120 °C. The results showed that the upper explosion limit (UEL) increased, and the lower explosion limit (LEL) decreased with the rising temperature. The explosion limits of propane diluted with nitrogen or carbon dioxide were also measured at high pressures from 0.10 to 0.16 MPa. The results showed that the UEL increased, and the LEL almost remainedunchanged along with increased pressure. Under the same initial operating conditions, the concentration of nitrogen required to reach the minimum inerting concentration (MIC) point was higher than the concentration of carbon dioxide. Finally, the study investigated the limiting oxygen concentration (LOC) of propane under various initial temperatures, initial pressures, and inert gases. The LOC of propane decreased approximately linearly with increased temperature or pressure, and the LOC of propane dilution with carbon dioxide was greater than dilution with nitrogen from 25 to 120 °C or from 0.10 to 0.16 MPa, which indicated that the dilution effect of carbon dioxide was better than that of nitrogen.  相似文献   

19.
In order to prevent dust explosions due to electrostatic discharges (ESD), this paper reports the minimum ignition energy (MIE) of aluminum powders in the air and the effective nitrogen (N2) concentration for the inert technique. The Hartman vertical-tube apparatus and five kinds of different sized pure aluminum powders (median particle size, D50; 8.53 μm–51.2 μm) were used in this study. The statistic minimum ignition energy (MIEs) of the most sensitive aluminum powder used in this study was 5 mJ, which was affected by the powder particle size (D50; 8.53 μm). In the case of aluminum powder, the inerting effects of N2 were quite different from the polymer powders. The MIE of aluminum powder barely changed until the N2 concentration was 89% in comparison with that of the normal air. When the N2 concentration was 90%, the MIE of aluminum powders suddenly exceeded 1000 mJ, which does not occur easily with ESD in the industrial process.  相似文献   

20.
The influence of additives of various chemical natures (CH4, N2, CO2, and steam) at a laminar burning velocity Su of hydrogen in air has been studied by numerical modelling of a flat flame propagation in a gaseous mixture. It was found that the additives of methane to hydrogen–air mixtures cause as a rule monotonic reduction in the Su value with the exception of very lean mixtures (fuel equivalence ratio ? = 0.4), for which a dependence of the laminar burning velocity on the additive's concentration has a maximum. In the case of the chemically inert additives (N2, CO2, H2O) the laminar burning velocity of rich near-limit hydrogen–air flames drops monotonically with an increase in the additive's content, but no more than 1.5 times, and the adiabatic flame temperature changes slowly in this case. In the case of methane as the additive, the laminar burning velocity is diminished approximately 5 times with an increase in the adiabatic flame temperature from 1200 to 2100 K. Deviations from the known empirical rule of the approximate constancy of the laminar burning velocity for near-limit flames are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号