共查询到20条相似文献,搜索用时 0 毫秒
1.
Considering the Ivlev-type functional response, we develop and analyze a class of one-prey multi-predator system with impulsive effect at different fixed times. Some sufficient conditions ensuring the prey to be extinct are obtained via the Floquent theory and small amplitude perturbation skill. Using the method of comparison involving multiple Laypunov functions, we derive some conditions for the permanence of the system. Numerical simulations of the impulsive system exhibit the rich complex dynamics for the key parameters, such as symmetry-breaking pitchfork bifurcation, periodic doubling bifurcation, chaos, periodic halving cascade and crisis. 相似文献
2.
Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions. 相似文献
3.
Climate, habitat, and species interactions are factors that control community properties (e.g., species richness, abundance) across various spatial scales. Usually, researchers study how a few properties are affected by one factor in isolation and at one scale. Hence, there are few multi-scale studies testing how multiple controlling factors simultaneously affect community properties at different scales. We ask whether climate, habitat structure, or insect resources at each of three spatial scales explains most of the variation in six community properties and which theory best explains the distribution of selected community properties across a rainfall gradient. We studied a Neotropical insectivorous bat ensemble in the Isthmus of Panama with acoustic monitoring techniques. Using climatological data, habitat surveys, and insect captures in a hierarchical sampling design we determined how much variation of the community properties was explained by the three factors employing two approaches for variance partitioning. Our results revealed that most of the variation in species richness, total abundance, and feeding activity occurred at the smallest spatial scale and was explained by habitat structure. In contrast, climate at large scales explained most of the variation in individual species' abundances. Although each species had an idiosyncratic response to the gradient, species richness peaked at intermediate levels of precipitation, whereas total abundance was very similar across sites, suggesting density compensation. All community properties responded in a different manner to the factor and scale under consideration. 相似文献
4.
Theoretical and empirical evidence suggests that body size is a major life-history trait impacting on the structure and functioning of complex food webs. However, long-term analyses of size-dependent interactions within simpler network modules, for instance, competitive guilds, are scant. Here, we model the assembly dynamics of the largest breeding seabird community in the Mediterranean basin during the last 30 years. This unique data set allowed us to test, through a "natural experiment," whether body size drove the assembly and dynamics of an ecological guild growing from very low numbers after habitat protection. Although environmental stochasticity accounted for most of community variability, the population variance explained by interspecific interactions, albeit small, decreased sharply with increasing body size. Since we found a demographic gradient along a body size continuum, in which population density and stability increase with increasing body size, the numerical effects of interspecific interactions were proportionally higher on smaller species than on larger ones. Moreover, we found that the per capita interaction coefficients were larger the higher the size ratio among competing species, but only for the set of interactions in which the species exerting the effect was greater. This provides empirical evidence for long-term asymmetric interspecific competition, which ultimately prompted the local extinction of two small species during the study period. During the assembly process stochastic predation by generalist carnivores further triggered community reorganizations and global decays in population synchrony, which disrupted the pattern of interspecific interactions. These results suggest that the major patterns detected in complex food webs can hold as well for simpler sub-modules of these networks involving non-trophic interactions, and highlight the shifting ecological processes impacting on assembling vs. asymptotic communities. 相似文献
5.
Trophic level interactions between predators create complex relationships such as intraguild predation. Theoretical research has predicted two possible paths to stability in intraguild systems: intermediate predators either outcompete higher-order predators for shared resources or select habitat based on security. The effects of intraguild predation on intermediate mammalian predators such as swift foxes (Vulpes velox) are not well understood. We examined the relationships between swift foxes and both their predators and prey, as well the effect of vegetation structure on swift fox-coyote (Canis latrans) interactions, between August 2001 and August 2004. In a natural experiment created by the Pinon Canyon Maneuver Site in southeastern Colorado, USA, we documented swift fox survival and density in a variety of landscapes and compared these parameters in relation to prey availability, coyote abundance, and vegetation structure. Swift fox density varied significantly between study sites, while survival did not. Coyote abundance was positively related to the basal prey species and vegetation structure, while swift fox density was negatively related to coyote abundance, basal prey species, and vegetation structure. Our results support the prediction that, under intraguild predation in terrestrial systems, top predator distribution matches resource availability (resource match), while intermediate predator distribution inversely matches predation risk (safety match). While predation by coyotes may be the specific cause of swift fox mortality in this system, the more general mechanism appears to be exposure to predation moderated by shrub density. 相似文献
6.
Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations. 相似文献
7.
Positive interactions are widely recognized as playing a major role in the organization of community structure and diversity. As such, recent theoretical and empirical works have revealed the significant contribution of positive interactions in shaping species’ geographical distributions, particularly in harsh abiotic conditions. In this report, we explore the joint influence of local dispersal and an environmental gradient on the spatial distribution, structure and function of communities containing positive interactions. While most previous theoretical efforts were limited to modelling the dynamics of single pairs of associated species being mutualist or competitor, here we employ a spatially explicit multi-species metacommunity model covering a rich range of interspecific interactions (mutualism, competition and exploitation) along an environmental gradient. We find that mutualistic interactions dominate in communities with low diversity characterized by limited species dispersal and poor habitat quality. On the other hand, the fraction of mutualistic interactions decreases at the expense of exploitation and competition with the increase in diversity caused by higher dispersal and/or habitat quality. Our multi-species model exemplifies the ubiquitous presence of mutualistic interactions and the role of mutualistic species as facilitators for the further establishment of species during ecosystem assembly. We therefore argue that mutualism is an essential component driving the origination of complex and diverse communities. 相似文献
8.
Traditionally, the dynamics of community assembly has been analyzed by means of deterministic models of differential equations. Despite the theoretical advances provided by such models, they are restricted to questions about community-wide features. The individual-based modeling offers an opportunity to link bionomic features to patterns at the community scale, allowing us to understand how trait-based assembly rules can arise by dynamical processes. The present paper introduces an individual-based model of community assembly, and discusses some of the major advantages and drawbacks of this approach. The model was framed to deal with predation among size-structured populations, incorporating allometric constraints to energetic requirements, movement, life-history features and interaction relationships among individuals. A protocol of assembly procedure is proposed, in which a period of intense species introductions is followed by a period without introductions. The resultant communities did not present any pattern of trait over-dispersion, meaning that the multivariate distances of bionomic features among co-occurring species were neither larger nor more regular than expected in a random collection of species. It suggests a weak influence of interspecific interactions in the model environment and individualistic rules of coexistence, driven mainly by the spatial structure. This highlights that trait over-dispersion and resource partitioning should not be considered a necessary condition for coexistence, even in communities entirely structured by internal processes like predation and competition. 相似文献
9.
Direct and indirect species interactions within ecological communities may play a strong role in influencing or maintaining community structure. Complex community interactions pose a major challenge to predicting ecosystem responses to environmental change because predictive frameworks require identification of mechanisms by which community interactions arise. Cavity-nesting communities are well suited for mechanistic studies of species interactions because cavity nesters interact through the creation of and competition for cavity-nest sites. In this study, we use a cavity-nest web as a predictive framework for identifying potential indirect species interactions within a cavity-nesting community. From 2002 to 2005, we monitored abundance and nests of cavity-nesting birds in the longleaf pine (Pinus palustris) ecosystem. Using a nest-web approach, we identified a potential indirect interaction between the Red-cockaded Woodpecker (Picoides borealis) and large secondary cavity nesters, mediated by the Northern Flicker (Colaptes auratus). We used structural equation modeling to test a path model of this interaction, using cavity excavation and enlargement as mechanisms which drive the relationship between these species. Through experimental manipulation of cavity availability, we blocked links described in our model, confirming cavity creation and enlargement as processes that influence community structure. We found that a single-species management technique could potentially disrupt this indirect relationship by affecting Northern Flicker cavity-excavation behavior. This study is the first demonstration of how experimental cavity manipulation can be used to test inferred processes derived from a nest web and highlights the need to understand how mechanisms underlying species interactions can complicate ecosystem responses to environmental change. 相似文献
10.
In the last decades, marine reserves have dramatically increased in number worldwide. Here I examined the potential of no-take marine reserves to reestablish lost predatory interactions and, in turn, cause community-wide changes in Mediterranean rocky reefs. Protected locations supported higher density and size of the most effective fish preying on sea urchins (the sea breams Diplodus sargus and D. vulgaris) than unprotected locations. Density of sea urchins (Paracentrotus lividus and Arbacia lixula) was lower at protected than at unprotected locations. Size structure of P. lividus was bimodal (a symptom of predation on medium-sized urchins) only at the protected locations. Coralline barrens were less extended at protected than at unprotected locations, whereas turf-forming and erect-branched algae showed an opposite pattern. Erect-unbranched and erect-calcified algae and conspicuous zoobenthic organisms did not show any pattern related to protection. Tethering experiments showed that predation impact on urchins was (1) higher at protected than at unprotected locations, (2) higher on P. lividus than on A. lixula, and (3) higher on medium-sized (2-3.5 cm test diameter) than large-sized (>3.5 cm) urchins. Sea urchins preyed on by fish in natural conditions were smaller at unprotected than at protected locations. The analysis of sea urchin remains found in Diplodus fish stomachs revealed that medium-sized P. lividus were the most frequently preyed upon urchins and that size range of consumed sea urchins expanded with increasing size of Diplodus fish. These results suggest that (1) depletion and size reduction of predatory fish caused by fishing alter patterns of predation on sea urchins, and that (2) fishing bans (e.g., within no-take marine reserves) may reestablish lost interactions among strongly interactive species in temperate rocky reefs with potential community-wide effects. 相似文献
11.
Diel changes in the composition of crustacean zooplankton and the diets of fish predators from an intertidal eelgrass flat were monitored concurrently. The zooplankton is characterized by two major components. The obligate zooplankters (holoplanktonic calanoid copepods and meroplanktonic decapod larvae) appear to exhibit vertical migration, being present in higher densities near the surface of the water column at night. The facultative zooplankton (amphipods and ostracods) are benthic during the day, but move up into the water column at night. Planktivorous midwaterdwelling fish consume calanoid copepods and decapod larvae during the day and cease feeding or switch their diet to amphipods at night. Benthic-dwelling fish consume some amphipods during both day and night. The factors important in prey selection by fish and the functional significance of vertical migration in both components of the zooplankton are discussed in the light of the changing patterns of fish predation.This paper is Publication No. 183 in the Ministry for Conservation of Victoria, Environmental Studies Series. 相似文献
12.
While communities are shaped by both local interactions and enrichment from the regional species pool, we propose a hypothesis that the balance of these forces shifts with latitude, with regional enrichment dominating at high latitudes and local interactions dominating at low latitudes. To test this hypothesis, we conducted a latitudinal-scale experiment with marine epifaunal communities. In four regions of the North Atlantic Ocean and Caribbean Sea, we used mimics of ecosystem engineers to manipulate biogenic structural complexity. We iteratively evaluated diversity patterns of experimental communities up to one year after deployment. Additional data were also collected from one of our tropical sites 2.5 years after initial deployment. As hypothesized, we found a reciprocal latitudinal gradient in the effects of the structurally complex mimics and regional enrichment. In the tropics, local diversity was always higher in association with the mimics than in exposed areas that were more open to predation. This effect was consistent across two spatial scales and beyond the one-year timescale of the experiment. In temperate communities, no consistent effects of the mimics on diversity were observed. However, the proportion of species from the regional species pool that were present at the local scale increased from the tropics to the temperate zone, consistent with the hypothesis that higher-latitude communities may experience greater influence from the regional species pool than communities at low latitudes. This study represents the first large-scale experimental demonstration that suggests that the relative impact of local interactions and regional enrichment on community diversity may depend on latitude. 相似文献
13.
Abstract: The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25–33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to "prevent" catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests. 相似文献
15.
Environmental and ecological degradation can be monitored by biological indicators such as plants, yet little research has been done using subterranean organisms such as collembola, especially in cities. Collembola, a soil fauna group, can be used to assess soil quality and to decipher assembly rules of soil organisms in cities. Here, we review 75 articles on soil collembola in an urban context. We found that soil properties and landscape characteristics influenced soil communities. There is a need for more connectivity between green urban spaces to allow the dispersion of collembola. Little information is available on the assembly of collembola communities, on biotic interactions and on dynamics of colonisation. 相似文献
16.
A mosaic patchwork of the barnacle Balanus balanoides L., the mussel Mytilus edulis L., and the alga Fucus vesiculosus L. was found in the transitional region between the mid and high intertidal zones on a rocky headland on Mount Desert Island, Maine, USA. The development of the mosaic was observed by following recruitment and survival of B. balanoides in denuded patches located at the same tidal level along a 60 m stretch of shore. Barnacle recruitment was least under canopies of F. vesiculosus and greatest in open areas kept moist at low tide by surf. Barnacle survival after settlement was least under the F. vesiculosus canopy due to the whiplash effect of the algal fronds in the surf and greatest in open areas free from competition from mussels. In open areas, early mortality was correlated with settlement density. In areas of dense settlement (60 spat cm -2) up to 90% mortality resulted within 5 months from crowding associated with growth. In older individuals crowding produced hummocks of elongated, weakly attached barnacles which were more prone to removal by surf than uncrowded barnacles. Mussels exerted competitive dominance over barnacles for space and the presence of mussel beds prevented further barnacle recruitment. Mussels suffered extensive mortality during winter storms when surf removed dense mats of weakly attached mussels. The patchy distribution of mussels and barnacles results from irregular rock substrata producing numerous environmental patches with respect to wave exposure and drainage at low tide, and from densitydependent mortality of both mussels and barnacles which creates patches of new colonizable space within each environmental patch. 相似文献
17.
Factors affecting survival and recruitment of 3531 individually mapped seedlings of Myristicaceae were examined over three years in a highly diverse neotropical rain forest, at spatial scales of 1-9 m and 25 ha. We found convincing evidence of a community compensatory trend (CCT) in seedling survival (i.e., more abundant species had higher seedling mortality at the 25-ha scale), which suggests that density-dependent mortality may contribute to the spatial dynamics of seedling recruitment. Unlike previous studies, we demonstrate that the CCT was not caused by differences in microhabitat preferences or life history strategy among the study species. In local neighborhood analyses, the spatial autocorrelation of seedling survival was important at small spatial scales (1-5 m) but decayed rapidly with increasing distance. Relative seedling height had the greatest effect on seedling survival. Conspecific seedling density had a more negative effect on survival than heterospecific seedling density and was stronger and extended farther in rare species than in common species. Taken together, the CCT and neighborhood analyses suggest that seedling mortality is coupled more strongly to the landscape-scale abundance of conspecific large trees in common species and the local density of conspecific seedlings in rare species. We conclude that negative density dependence could promote species coexistence in this rain forest community but that the scale dependence of interactions differs between rare and common species. 相似文献
18.
Environmental and Ecological Statistics - It is shown that community dynamics is neither haphazard nor completely directed. This is quite clear from our examination of a concrete example where... 相似文献
19.
Environmental perturbations (e.g., disturbance, fertilization) commonly shift communities to a new mean state, but much less is known about their effects on the variability (dispersion) of communities around the mean, particularly when perturbations are combined. Community dispersion may increase or decrease (representing a divergence or convergence among communities) if changing environmental conditions alter species interactions or magnify small initial differences that develop during community assembly. We used data from an experimental study of disturbance and fertilization in a low-productivity grassland to test how these two perturbations affect patterns of species composition and abundance. We found that a one-time biomass reduction decreased community dispersion, which persisted over four growing seasons. Conversely, continuous fertilization increased community dispersion and, when combined with disturbance, led to the formation of three distinct community states. These results illustrate that perturbations can have differing effects on community dispersion. Attention to the variance in community responses to perturbations lends insight into how ecological interactions determine community structure, which may be missed when focusing only on mean responses. Furthermore, multiple perturbations may have complex effects on community dispersion, yielding convergence or divergence patterns that are difficult to predict based on analysis of single factors. 相似文献
20.
A highly diverse soft-bottom community in Kingston Harbour, Jamaica is described to provide additional information on the structure of tropical benthic communities. It is shown that the community has a level of diversity unique to stable tropical environments, that dominance by a few species is greatly reduced,and that there are no true parallels to this community in similar environments. The community described seems to fit Sanders' stability-time hypothesis. The density and standing crop of the community are low, and possible explanations for this are discussed. Continuous year-round breeding, short life-spans, and fast turnover rates are suggested as the most important factors regulating biomass in the community described. 相似文献
|