首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Objective: Characterization of the severity of injury should account for both mortality and disability. The objective of this study was to develop a disability metric for thoracic injuries in motor vehicle crashes (MVCs) and compare the functional outcomes between the pediatric and adult populations.

Methods: Disability risk (DR) was quantified using Functional Independence Measure (FIM) scores within the National Trauma Data Bank for the most frequently occurring Abbreviated Injury Scale (AIS) 2–5 thoracic injuries. Occupants with thoracic injury were classified as disabled or not disabled based on the FIM scale, and comparisons were made between the following age groups: pediatric, adult, middle-aged, and older occupants (ages 7–18, 19–45, 46–65, and 66+, respectively). For each age group, DR was calculated by dividing the number of patients who were disabled and sustained a given injury by the number of patients who sustained a given injury. To account for the effect of higher severity co-injuries, a maximum AIS adjusted DR (DRMAIS) was also calculated for each injury. DR and DRMAIS could range from 0 to 100% disability risk.

Results: The mean DRMAIS for MVC thoracic injuries was 20% for pediatric occupants, 22% for adults, 29% for middle-aged adults, and 43% for older adults. Older adults possessed higher DRMAIS values for diaphragm laceration/rupture, heart laceration, hemo/pneumothorax, lung contusion/laceration, and rib and sternum fracture compared to the other age groups. The pediatric population possessed a higher DRMAIS value for flail chest compared to the other age groups.

Conclusion: Older adults had significantly greater overall disability than each of the other age groups for thoracic injuries. The developed disability metrics are important in quantifying the significant burden of injuries and loss of quality life years. Such metrics can be used to better characterize severity of injury and further the understanding of age-related differences in injury outcomes, which can influence future age-specific modifications to AIS.  相似文献   


2.
3.
Objective: Traffic crashes have high mortality and morbidity for young children. Though many specialized child restraint systems improve injury outcomes, no large-scale studies have investigated the cross-chest clip's role during a crash, despite concerns in some jurisdictions about the potential for neck contact injuries from the clips. This study aimed to investigate the relationship between cross-chest clip use and injury outcomes in children between 0 and 4 years of age.

Methods: Child passengers between 0 and 4 years of age were selected from the NASS-CDS data sets (2003–2014). Multiple regression analysis was used to model injury outcomes while controlling for age, crash severity, crash direction, and restraint type. The primary outcomes were overall Abbreviated Injury Score (AIS) 2+ injury, and the presence of any neck injury.

Results: Across all children aged 0–4 years, correct chest clip use was associated with decreased Abbreviated Injury Scale (AIS) 2+ injury (odds ratio [OR] = 0.44, 95% confidence interval [CI], 0.21–0.91) and was not associated with neck injury. However, outcomes varied by age. In children <12 months old, chest clip use was associated with decreased AIS 2+ injury (OR = 0.09, 95% CI, 0.02–0.44). Neck injury (n = 7, all AIS 1) for this age group only occurred with correct cross-chest clip use. For 1- to 4-year-old children, cross-chest clip use had no association with AIS 2+ injury, and correct use significantly decreased the odds of neck injury (OR = 0.49; 95% CI, 0.27–0.87) compared to an incorrectly used or absent cross-chest clip. No serious injuries were directly caused by the chest clips.

Conclusions: Correct cross-chest clip use appeared to reduce injury in crashes, and there was no evidence of serious clip-induced injury in children in 5-point harness restraints.  相似文献   


4.
Objective: Our study measured the change in head injuries and deaths among motorcycle users in Cu Chi district, a suburban district of Ho Chi Minh City.

Methods: Hospital records for road traffic injuries (RTIs) were collected from the Cu Chi Trauma Centre and motorcycle-related death records were obtained from mortality registries in commune health offices. Head injury severity was categorized using the Abbreviated Injury Score (AIS). Rate ratios (RRs) were used to compare rates pre- and post-law (2005/2006–2009/2010). Cu Chi's population, stratified by year, age, and sex, was used as the denominator.

Results: Of records identifying the transportation mode at the time of injury, motorcyclists accounted for most injuries (3,035, 87%) and deaths (238, 90%). Head injuries accounted for 70% of motorcycle-related hospitalizations. Helmet use was not recorded in any death records and not in 97% of medical records. Males accounted for most injuries (73%) and deaths (88%). The median age was 28 years and 32 years for injuries and deaths, respectively. Compared to the pre-law period, rates of motorcycle injuries (RR = 0.53; 95% confidence interval [CI], 0.49–0.58), head injuries (RR = 0.35; 95% CI, 0.31–0.39), severe head injuries (RR = 0.47; 95% CI, 0.34–0.63), and deaths (RR = 0.69; 95% CI, 0.53–0.89) significantly decreased in the post-law period.

Conclusions: Rates of head injuries and deaths among motorcycle riders decreased significantly after implementation of the mandatory helmet law in Vietnam. To further examine the impact of the motorcycle helmet law, including compliance and helmet quality, further emphasis should be placed on gathering helmet use data from injured motorcyclists.  相似文献   


5.
6.
Objective: The purpose of this study was to identify and better understand the features of fatal injuries in cyclists aged 75 years and over involved in collisions with either hood- or van-type vehicles.

Methods: This study investigated the fatal injuries of cyclists aged 75 years old and over by analyzing accident data. We focused on the body regions to which the fatal injury occurred using vehicle–bicycle accident data from the Institute for Traffic Accident Research and Data Analysis (ITARDA) in Japan. Using data from 2009 to 2013, we examined the frequency of fatally injured body region by gender, age, and actual vehicle travel speed. We investigated any significant differences in distributions of fatal injuries by body region for cyclists aged 75 years and over using chi-square tests to compare with cyclists in other age groups. We also investigated the cause of fatal head injuries, such as impact with a road surface or vehicle.

Results: The results indicated that head injuries were the most common cause of fatalities among the study group. At low vehicle travel speeds for both hood- and van-type vehicles, fatalities were most likely to be the result of head impacts against the road surface.

The percentage of fatalities following hip injuries was significantly higher for cyclists aged 75 years and over than for those aged 65–74 or 13–59 in impacts with hood-type vehicles. It was also higher for women than men in the over-75 age group in impacts with these vehicles.

Conclusions: For cyclists aged 75 years and over, wearing a helmet may be helpful to prevent head injuries in vehicle-to-cyclist accidents. It may also be helpful to introduce some safety measures to prevent hip injuries, given the higher level of fatalities following hip injury among all cyclists aged 75 and over, particularly women.  相似文献   


7.
8.
Objective: This article discusses the characteristics and injury patterns of serious road injuries (Maximum Abbreviated Injury Scale [MAIS] 2+ inpatients) in The Netherlands.

Methods: In The Netherlands, the actual number of serious injuries is estimated by linking police data to hospital data. The distribution of serious road injuries over (1) travel mode and gender and (2) crash type and age are compared for the years 2000 and 2011. Moreover, the distribution of the injuries over the body regions is illustrated using colored injury body profiles.

Results: The number of serious injuries is higher for men than for women and increased from 16,500 in 2000 to 19,700 in 2011. In 2011, about half (51%) of the serious road injuries were due to a bicycle crash not involving a motor vehicle. The share of casualties aged 60 years and older is relatively high (43% in 2011) in these crashes. The injury body profiles show that head injuries (31%) and injuries to the lower extremities (37%) are most prevalent. Compared to other travel modes, pedestrians and riders of powered 2-wheelers relatively often sustain lower-leg injuries compared to other travel modes. Head injuries are most prevalent in cyclists who are injured in a crash with a motorized vehicle. Cyclists who are injured in a crash not involving a motor vehicle and casualties of 60 years and older relatively often include hip or upper-leg injuries.

Conclusion: The characteristics of serious road injuries differ from those of fatalities and the distribution of injuries over the body differs by travel mode, gender, and age.  相似文献   


9.
Background: The consequences of injuries in terms of disabilities and health burden are relevant for policy making. This article provides an overview of the current knowledge on this topic and discusses the health burden of serious road injuries in The Netherlands.

Methods: The overview of current knowledge on disabilities following a road crash is based on a literature review. The health burden of serious road injuries is quantified in terms of years lived with disability (YLD), by combining incidence data from the Dutch hospital discharge register with information about temporary and lifelong disability.

Results: Literature shows that road traffic injuries can have a major impact on victims' physical and psychological well-being and functioning. Reported proportions of people with disability vary between 11 and 80% depending on the type of casualties, time elapsed since the crash, and the health impacts considered. Together, all casualties involving serious injuries in The Netherlands in 2009 account for about 38,000 YLD, compared to 25,000 years of life lost (YLL) of fatalities. Ninety percent of the burden of injury is due to lifelong consequences that are experienced by 20% of all those seriously injured in road accidents. Lower leg injuries and head injuries represent a high share in the total burden of injury as have cyclists that are injured in a crash without a motorized vehicle. Pedestrians and powered 2-wheeler users show the highest burden of injury per casualty.

Conclusion: Given their major impacts and contribution to health burden, road policy making should also be aimed at reducing the number of serious road injuries and limiting the resulting health impacts.  相似文献   


10.
Objective: Although electric bicycle-related injuries have become the most common reason for hospitalization due to a road crash in China, no study has comprehensively investigated electric bicycle collisions and their impact on orthopedic injuries; such a study may provide evidence to support a new road safety policy.

Methods: A retrospective review of orthopedic injuries from electric bicycle collisions was performed in an urban trauma center. We collected variables including age, gender, location of fracture, presence of open or closed fractures, concomitant vascular, and neurologic injuries.

Results: A total of 2,044 cases were involved in electric bicycle collisions. The orthopedic injury victims were predominantly male and middle aged. The most common orthopedic injury was a femur fracture. Open fractures frequently involved the forearm and tibia/fibula. Male patients were more likely to suffer from multiple fractures and associated injuries than female patients. Fewer patients age 60 years old or older wore helmets at the time of the accident compared to those in other age groups.

Conclusions: Orthopedic injuries from electric bicycle-related accidents cause patients substantial suffering that could lead to serious social consequences. Helmet use and protective clothing or similar safety gear, especially for electric bicycle users, should be required to provide greater protection.  相似文献   


11.
Objective: Pelvic injuries are a serious and commonly occurring injury to motorcycle riders involved in crashes, yet there has been limited research investigating the mechanisms involved in these injuries. This study aimed to investigate the mechanisms involved in pelvic injuries to crashed motorcyclists.

Method: This study involved in-depth crash investigation and 2 convenience-based data sets were used. These data sets investigated motorcycle crashes in the Sydney, Newcastle, and Adelaide regions. Participants included motorcycle riders who had crashed either on a public road or private property within the study areas. The mechanism of injury and the type of injuries were investigated.

Results: The most frequent cause of pelvic injuries in crashed motorcyclists was due to contact with the motorcycle fuel tank during the crash (85%). For riders who had come into contact with the fuel tank, the injury types were able to be grouped into 3 categories based on the complexity of the injury. The complexity of the injury appeared to increase with impact speed but this was a nonsignificant trend. The pelvic injuries that did not occur from contact with the fuel tank in this sample differed in asymmetry of loading and did not commonly involve injury to the bladder. They were commonly one-sided injuries but this differed based on the point of loading; however, a larger sample of these injuries needs to be investigated.

Conclusion: Overall improvements in road safety have not been replicated in the amelioration of pelvic injuries in motorcyclists and improvements in the design of crashworthy motorcycle fuel tanks appear to be required.  相似文献   


12.
Objective: We studied the correlation between airbag deployment and eye injuries using 2 different data sets.

Methods: The registry of the Finnish Road Accident (FRA) Investigation Teams was analyzed to study severe head- and eyewear-related injuries. All fatal passenger car or van accidents that occurred during the years 2009–2012 (4 years) were included (n = 734). Cases in which the driver's front airbag was deployed were subjected to analysis (n = 409). To determine the proportion of minor, potentially airbag-related eye injuries, the results were compared to the data for all new eye injury patients (n = 1,151) recorded at the Emergency Clinic of the Helsinki University Eye Hospital (HUEH) during one year, from May 1, 2011, to April 30, 2012.

Results: In the FRA data set, the unbelted drivers showed a significantly higher risk of death (odds ratio [OR] = 5.89, 95% confidence interval [CI], 3.33–10.9, P = 2.6E-12) or of sustaining head injuries (OR = 2.50, 95% CI, 1.59–3.97, P = 3.8E-5). Only 4 of the 1,151 HUEH patients were involved in a passenger car accident. In one of the crashes, the airbag operated, and the belted driver received 2 sutured eye lid wounds and showed conjunctival sugillation. No permanent eye injuries were recorded during the follow-up. The calculated annual airbag-related eye injury incidence was less than 1/1,000,000 people, 4/100,000 accidents, and 4/10,000 injured occupants.

Conclusions: Airbag-related eye injuries occurred very rarely in car accidents in cases where the occupant survived and the restraint system was appropriately used. Spectacle use did not appear to increase the risk of eye injury in restrained occupants.  相似文献   


13.
Objectives: Motor vehicle crashes remain a leading cause of death in the United States (US). Thoracic aortic dissection due to blunt trauma remains a major injury mechanism, and up to 90% of these injuries result in death on the scene. The objective of this study is to understand the modern risk factors and etiology of fatal thoracic aortic injuries in the current US fleet.

Methods: Using a unique, linked, Fatality Analysis Reporting System (FARS) and Multiple Cause of Death (MCOD) database from 2000–2010, 144,169 drivers over 16 years of age who suffered fatal injuries were identified. The merged database provides an unparalleled fidelity for identifying thoracic aortic injuries due to motor vehicle accidents. Thoracic aortic injuries were defined by ICD-10 codes S250. Univariate and multivariate logistic regression models for presence of any thoracic aortic injuries were fitted. Age, gender, BMI weight categories, vehicle class, model year, crash type/direction, severity of crash damage, airbag deployment location, and seatbelt use, fatal injury codes, and location of injury were considered. Odds ratios (OR) and corresponding 95% confidence intervals (95%CI) are calculated.

Results: There were 2953 deaths (2.10%) related to thoracic aortic injuries that met the inclusion criteria. Nearside crashes were associated with an increased odds (OR = 1.42, 1.1-1.83), while rollover crashes (OR =.44,.29-.66) were associated with a reduced odds of fatal thoracic aortic injury. Using backward selection on the full multivariate model, the only significant model effects that remained were vehicle type, crash type, body region, and injury type.

Conclusions: The increased prevalence of fatal thoracic aortic injury in nearside crashes, increasing age, and vehicle type provide some insight into the current US fleet. Important factors, including model year, had significantly lower levels of the injury in univariate analysis, demonstrating the effect of safety improvements in newer model vehicles. Further study of this fatal injury is warranted, including comparisons of those who survive the injury.  相似文献   


14.
Objective: As vehicle safety technologies and evaluation procedures advance, it is pertinent to periodically evaluate injury trends to identify continuing and emerging priorities for intervention. This study examined detailed injury distributions and injury risk trends in belted occupants in frontal automobile collisions (10 o’clock to 2 o’clock) using NASS-CDS (1998–2015).

Methods: Injury distributions were examined by occupant age and vehicle model year (stratified at pre- and post-2009). Logistic regression models were developed to examine the effects of various factors on injury risk (by body region), controlling for delta-V, sex, age, height, body mass index (BMI), vehicle model year (again stratified at 2009).

Results: Among other observations, these analyses indicate that newer model year vehicles (model year [MY] 2009 and later) carry less risk of Abbreviated Injury Scale (AIS) 2+ and AIS 3+ injury compared to older model year vehicles, with odds ratios of 0.69 (AIS 2+) and 0.45 (AIS 3+). The largest reductions in risk between newer model year vehicles and older model year vehicles occur in the lower extremities and in the risk of skull fracture. There is no statistically significant change in risk of AIS 3+ rib fracture or sternum injury between model year categories. Females are at greater risk of AIS 2+ and AIS 3+ injury compared to males, with increased risk across most injury types.

Conclusions: For belted occupants in frontal collisions, substantial reductions in injury risk have been realized in many body regions in recent years. Risk reduction in the thorax has lagged other body regions, resulting in increasing prevalence among skeletal injuries in newer model year vehicles (especially in the elderly). Injuries also remain common in the arm and hand/wrist for all age ranges studied. These results provide insight into where advances in the field have made gains in occupant protection and what injury types remain to be addressed.  相似文献   


15.
Objective: The objective of this study was to investigate the psychological impact of traffic injuries in bicyclists (cyclists) in comparison to car occupants who also sustained traffic injuries. Factors predictive of elevated psychological distress were also investigated.

Methods: An inception cohort prospective design was used. Participants included cyclists aged ≥17 years (mean age 41.7 years) who sustained a physical injury (n = 238) assessed within 28 days of the crash, following medical examination by a registered health care practitioner. Injury included musculoskeletal and soft tissue injuries and minor/moderate traumatic brain injury (TBI), excluding severe TBI, spinal cord injury, and severe multiple fractures. Assessment also occurred 6 months postinjury. Telephone-administered interviews assessed a suite of measures including sociodemographic, preinjury health and injury factors. Psychological impact was measured by pain catastrophization, trauma-related distress, and general psychological distress. The psychological health of the cyclists was compared to that of the car occupants (n = 234; mean age 43.1 years). A mixed model repeated measures analysis, adjusted for confounding factors, was used to determine differences between groups and regression analyses were used to determine contributors to psychological health in the cyclists 6 months postinjury.

Results: Cyclists had significantly better psychological health (e.g., lower pain catastrophizing, lower rates of probable posttraumatic stress disorder [PTSD], and lower general distress levels) compared to car occupants at baseline and 6 months postinjury. Factors predictive of cyclists' psychological distress included younger age, greater perceived danger of death, poorer preinjury health, and greater amount of time in hospital after the injury.

Conclusions: These data provide insight into how cyclists perceive and adjust to their traffic injuries compared to drivers and passengers who sustain traffic injuries, as well as direction for preventing the development of severe psychological injury. Future research should examine the utility of predictors of psychological health to improve recovery.  相似文献   


16.
Objective: Understanding pedestrian injury trends at the local level is essential for program planning and allocation of funds for urban planning and improvement. Because we hypothesize that local injury trends differ from national trends in significant and meaningful ways, we investigated citywide pedestrian injury trends to assess injury risk among nationally identified risk groups, as well as identify risk groups and locations specific to Baltimore City.

Methods: Pedestrian injury data, obtained from the Baltimore City Fire Department, were gathered through emergency medical services (EMS) records collected from January 1 to December 31, 2014. Locations of pedestrian injuries were geocoded and mapped. Pearson's chi-square test of independence was used to investigate differences in injury severity level across risk groups. Pedestrian injury rates by age group, gender, and race were compared to national rates.

Results: A total of 699 pedestrians were involved in motor vehicle crashes in 2014—an average of 2 EMS transports each day. The distribution of injuries throughout the city did not coincide with population or income distributions, indicating that there was not a consistent correlation between areas of concentrated population or concentrated poverty and areas of concentrated pedestrian injury. Twenty percent (n = 138) of all injuries occurred among children age ≤14, and 22% (n = 73) of severe injuries occurred among young children. The rate of injury in this age group was 5 times the national rate (Incident Rate Ratio [IRR] = 4.81, 95% confidence interval [CI], [4.05, 5.71]). Injury rates for adults ≥65 were less than the national average.

Conclusions: As the urban landscape and associated pedestrian behavior transform, continued investigation of local pedestrian injury trends and evolving public health prevention strategies is necessary to ensure pedestrian safety.  相似文献   


17.
Objective: The objective of this research was to study risk factors that significantly influence the severity of crashes for drivers both under and not under the influence of alcohol.

Methods: Ordinal logistic regression was applied to analyze a crash data set involving drivers under and not under the influence of alcohol in China from January 2011 to December 2014.

Results: Four risk factors were found to be significantly associated with the severity of driver injury, including crash partner and intersection type. Age group was found to be significantly associated with the severity of crashes involving drivers under the influence of alcohol. Crash partner, intersection type, lighting conditions, gender, and time of day were found to be significantly associated with severe driver injuries, the last of which was also significantly associated with severe crashes involving drivers not under the influence of alcohol.

Conclusions: This study found that pedestrian involvement decreases the odds of severe driver injury when a driver is under the influence of alcohol, with a relative risk of 0.05 compared to the vehicle-to-vehicle group. The odds of severe driver injury at T-intersections were higher than those for traveling along straight roads. Age was shown to be an important factor, with drivers 50–60 years of age having higher odds of being involved in severe crashes compared to 20- to 30-year-olds when the driver was under the influence of alcohol.

When the driver was not under the influence of alcohol, drivers suffered more severe injuries between midnight and early morning compared to early nighttime. The vehicle-to-motorcycle and vehicle-to-pedestrian groups experienced less severe driver injuries, and vehicle collisions with fixed objects exhibited higher odds of severe driver injury than did vehicle-to-vehicle impacts. The odds of severe driver injury at cross intersections were 0.29 compared to travel along straight roads. The odds of severe driver injury when street lighting was not available at night were 3.20 compared to daylight. The study indicated that female drivers are more likely to experience severe injury than male drivers when not under the influence of alcohol. Crashes between midnight and early morning exhibited higher odds of severe injury compared to those occurring at other times of day.

The identification of risk factors and a discussion on the odds ratio between levels of the impact of the driver injury and crash severity may benefit road safety stakeholders when developing initiatives to reduce the severity of crashes.  相似文献   


18.
Background: There is a need for routine estimates of injury recovery costs from pedestrian collisions using hospital separation records for economic evaluations.

Objective: To estimate the cost of injury recovery following pedestrian–vehicle collisions using the personal injury recover cost (PIRC) equation using key demographic and injury characteristics.

Method: An estimation of the costs of on-road pedestrian–vehicle collisions involving individuals who were injured and hospitalized in New South Wales (NSW), Australia, from 2002 to 2011 using the PIRC equation. The PIRC estimates individual injury recovery costs and does not include costs associated with property damage, vehicle repair, or rescue services. Individual recovery costs associated with severe traumatic brain injury (TBI) were estimated. The injured individual's mean, median, and total injury recovery costs are described for key demographic, injury, and crash characteristics.

Results: There were 9,781 pedestrians who were injured, costing an estimated total of $2.4 billion in personal injury recovery costs, an annual cost of $243 million. Males had a total injury recovery cost 1.7 times higher than females. The median injury recovery cost decreased with increasing age. TBI ($248,491) and spinal cord and vertebral column injuries ($264,103) had the highest median injury recovery costs for the body region of the most severe injury. TBI accounted for 22.6% of the total injury recovery costs for the most severe injury sustained. Just over one third of pedestrians sustained 4 or more injuries, with a median cost of $243,992, which was 1.6 times higher than the cost for a pedestrian who sustained a single injury ($153,682).

Conclusions: Personal injury recovery costs following pedestrian–vehicle collisions where a pedestrian is injured are substantial in NSW. The PIRC equation enables the economic cost burden of road traffic injury to be calculated using hospital separation data. The PIRC enables comprehensive personal injury recovery costs to be estimated and would aid in economic evaluations of preventive strategies in road safety.  相似文献   


19.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


20.
Objectives: Truck vehicles (TVs) have a different structure and stiffness than non-TVs and are used commercially for transporting goods. This study aimed to analyze whether truck occupants have a greater risk of serious injury than those of other types of vehicles.

Methods: Crash data were obtained from the Korean In-Depth Data Analysis Study (KIDAS) for calendar years 2011–2016. Vehicles involved in frontal crash were included and classified into TVs and non-TVs (passenger cars and sports utility vehicles). We compared the demographic characteristics and serious injuries by body region between the 2 groups and analyzed factors that contributed to the serious injury severity from frontal crashes.

Results: The analysis was based on 884 occupants; 177 (20.0%) were in TVs and 707 (80.0%) were in non-TVs. Non-TVs had more frontal airbags deployments than TVs (50.9% vs. 3.4%, P <.01). TV occupants were 4.8 times more likely to have a serious lower extremity (LE) injury (adjusted odds ratio [AOR] = 4.820; 95% confidence interval [CI], 2.407–9.653) and 2.5 times to have a serious abdominal injury (AOR = 2.465; 95% CI, 1.108–5.487) compared to non-TV occupants.

Conclusions: Truck occupants had more serious LE and abdominal injuries than those of other types of vehicles in frontal crashes. Structural improvement and legislative efforts to develop safety systems are necessary to improve the safety of truck occupants.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号