首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We conducted kinetic batch experiments to determine the reduction of Chromium(VI) by a type strain of Shewanella alga (BrY-MT) ATCC 55627. Chromium(VI) was reduced to Chromium(III) by BrY-MT grown in three different substrates: BHIB (brain heart infusion broth), TSB (tryptic soy broth), and M9 (minimum broth). Four different Cr(VI) concentrations 4.836, 10.00, 37.125, and 260.00 mg l-1 were reduced at different rates by BrY-MT in both aerobic and anaerobic conditions. BrY-MT grown in BHIB reduced the maximum amount of Cr(VI) followed by TSB and M9. Carbondioxide produced from bacterial respiration varied with and without Cr(VI) under both aerobic and anaerobic conditions. The Cr(VI) reduction data under anaerobic condition was fitted by a monod model to determine the bacterial kinetic parameters. The kinetic parameters determined by fitting the anaerobic experimental data were used to run a forward simulation for experiments conducted under aerobic conditions. The monod model was modified to account for an inhibition parameter for the Cr(VI) experiment at 260 mg l-1. All the parameters varied within a narrow range, and were distinct for different substrates. Our studies show that, successful in situ bioremediation of Cr(VI) is depended on the type of substrates (electron donors) and the concentration of Cr(VI) in geologic medium.  相似文献   

2.
The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.  相似文献   

3.
Hexavalent chromium (Cr(VI)) was reduced to non-toxic trivalent chromium (Cr(III)) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT in the presence of pyrolusite (beta-MnO(2)) coated sand and uncoated-quartz sand. All dynamic column experiments were conducted under growth conditions using Cr(VI) as the terminal electron acceptor and lactate as the electron donor and energy source. Reduction of Cr(VI) was rapid (within 8 h) in columns packed with uncoated quartz sand and BrY-MT, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO(2)-coated sand. The role of beta-MnO(2) in this study was to provide oxidation of trivalent chromium (Cr(III)). BrY-MT attachment was higher on beta-MnO(2)-coated sand than on uncoated quartz sand at 10, 60, and 85.5 h. Results have shown that this particular strain of Shewanella did not appreciably reduce Mn(IV) to Mn(II) species nor biosorbed Cr and Mn during its metabolic activities.  相似文献   

4.
Environmental Science and Pollution Research - Sulfidated nanoscale zerovalent iron (S-nZVI) supported on a flower spherical Mg(OH)2 with different Mg/Fe ration were successfully synthesized. The...  相似文献   

5.
Cho HH  Lee T  Hwang SJ  Park JW 《Chemosphere》2005,58(1):103-108
Hybrid barriers using dechlorination and immobilization were studied to remove trichloroethylene (TCE) in this study. Hybrid barriers of iron filings and organo (hexadecyltrimethylammonium, HDTMA)-bentonite were simulated in columns to assess the performance of the hybrid barriers. TCE reduction rate for the mixture of zero valent iron (ZVI) and HDTMA-bentonite was approximately seven times higher than that for ZVI, suggesting the reduction of TCE was accelerated when HDTMA-bentonite was mixed with ZVI. For the column of two separate layers of iron and HDTMA-bentonite, TCE reduction rate was nearly similar to that for ZVI alone, but the partition coefficient (Kd) was 4.5 times higher than that for ZVI only. TCE was immobilized in the first layer with HDTMA-bentonite due to sorption, and then dechlorinated in the second layer with iron filings due to reduction. The HDTMA-bentonite and minimally-desorbed HDTMA from the organo-bentonite are believed to contribute the increase in TCE concentration on iron surface so that more TCE could be available for reduction. Therefore, the incorporation of HDTMA-bentonite into ZVI not only can effectively retard the transport of chlorinated organic contaminants from landfill leachate or oil shock in subsurface environment, also can expedite the reduction rate of TCE.  相似文献   

6.
郭莹  崔康平 《环境工程学报》2014,8(10):4159-4162
模拟被三氯乙烯(TCE)污染的地下水,分别按照硫酸根和TCE质量浓度比为0.1、0.5、1.0、2.0和4.0投加硫酸盐,研究硫酸盐还原作用对TCE降解的影响,确定最适宜TCE完全还原脱氯的硫酸盐投加配比。结果表明,硫酸盐还原作用能强化TCE的降解;实验条件下,TCE的降解性能随着两者质量浓度比的增大而增强,较好的投加配比为4.0;硫酸盐还原与TCE降解存在一定的相互促进作用。  相似文献   

7.
Liang C  Lee IL  Hsu IY  Liang CP  Lin YL 《Chemosphere》2008,70(3):426-435
In situ chemical oxidation with persulfate anion (S2O82*) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). An accelerated reaction using S2O82* to destroy TCE can be achieved via chemical activation with ferrous ion to generate sulfate radicals (SO4*)(E degrees =2.6 V). The column study presented here simulates persulfate oxidation of TCE in porous media (glass beads and a sandy soil). Initial experiments were conducted to investigate persulfate transport in the absence of TCE in the column. The persulfate flushing exhibited a longer residence time and revealed a moderate persulfate interaction with soils. In TCE treatment experiments, the results indicate that the water or persulfate solution would push dissolved TCE from the column. Therefore, the effluent TCE concentration gradually increased to a maximum when about one pore volume was replaced with the flushing solution in the column. The presence of Fe2+ concentration within the column caused a quick drop in effluent TCE concentration and more TCE degradation was observed. When a TCE solution was flushing through the soil column, breakthrough of TCE concentration in the effluent was relatively slow. In contrast, when the soil column was flushed with a mixed solution of persulfate and TCE, persulfate appeared to preferentially oxidize soil oxidizable matter rather than TCE during transport. Hence, persulfate oxidation of soil organics may possibly reduce the interaction between TCE and soil (e.g., adsorption) and facilitate the transport of TCE through soil columns resulting in faster breakthrough.  相似文献   

8.
Environmental Science and Pollution Research - Microbial iron reduction (MIR) is an important and ubiquitous natural process in the biogeochemical cycling of iron and carbon in anaerobic...  相似文献   

9.
不同阳离子对Fe~0还原硝酸盐的影响   总被引:1,自引:0,他引:1  
由于水中硝酸盐污染的普遍性、难去除性和对人体健康的潜在危害性而引起人们的广泛关注。通过批实验,考察了不同阳离子(Fe2+、Fe3+和Cu2+)对Fe0还原硝酸盐的影响。结果表明,由于加入阳离子可直接或间接地增加溶液中的Fe2+而都能促进硝酸盐的还原,作用顺序为Fe3+Fe2+Cu2+;Fe2+对硝酸盐的还原具有重要作用,并随着反应的进行,转化为铁氧化物附着在铁表面而降低铁的活性;硝酸盐还原的主要产物为氨氮,亚硝酸盐只在反应初期有少量积累,尤其是加Cu2+的体系中,但随后都很快降低;在所有体系中,检测到的三氮(NO3--N、NO2--N和NH4+-N)之和只占理论总氮的51.5%~82.6%;动力学分析表明,硝酸盐的还原在不加阳离子的体系中更符合一级反应,而加了阳离子的处理更符合Lo-gistic模型。本研究结果阐明了Fe2+对Fe0还原硝酸盐的重要性。  相似文献   

10.
基于Fe2(C2O4)3的光化学性质,研究了Fe2(C2O4)3光催化协同络合铁脱硝剂再生的实验过程。实验考察了在50 ℃和Fe(II)EDTA浓度为0.01 mol·L-1以及NO进口浓度为530 mg·m-3的模拟烟气脱硝系统中,光催化再生模式、初始pH、Fe2(C2O4)3浓度及组成、氧气浓度对再生过程的影响。结果表明:Fe2(C2O4)3分开加入和分步光照是适合于本体系的反应方式;草酸钠与硫酸亚铁的最佳浓度比为3,浓度分别为0.06 和0.02 mol·L-1,吸收液初始pH为5.3,有氧参与条件下,实现了络合剂有效再生,再生吸收液脱硝率最高可恢复到60%左右;氧在再生过程中表现出正协同效应。通过牺牲光敏性的草酸铁配体再生脱硝络合剂,建立了一种温和的光助低温湿式氨法同步脱硫脱硝过程。  相似文献   

11.
采用螯合剂柠檬酸(CA)强化纳米零价铁(nZVI),活化过硫酸钠(PS)体系,降解水溶液中的三氯乙烯(TCE),分别考察了PS、CA、nZVI投加量、溶液初始pH和无机阴离子对TCE降解效果的影响,确定了在TCE降解过程中起主导作用的活性氧自由基,并验证了PS/nZVI/CA体系降解实际地下水中TCE的效果。结果表明:投加适量的CA可以明显提高PS/nZVI体系对TCE的降解效果,但当CA浓度过高时,TCE降解反而受到抑制,过量或不足的PS、nZVI均会降低TCE的降解率;当溶液初始pH为3~9时,PS/nZVI/CA体系可有效降解TCE;溶液中存在的Cl–和HCO_3~-会抑制TCE的降解,其中HCO_3~-的抑制作用大于Cl–;自由基清除实验和电子顺磁共振实验表明PS/nZVI/CA体系中产生了HO·、SO_4~-·和O _2~-·活性氧自由基,其中HO·、SO_4~-·对TCE降解起主导作用;CA的加入有利于实际地下水中TCE的降解,PS/nZVI/CA体系相比PS/nZVI体系,更适应实际地下水中各种水质条件的冲击,具有实际应用前景。  相似文献   

12.
为降低水体中的硝态氮对环境的危害,提高污水处理厂出水水质,将催化剂运用到零价铁还原硝态氮反应中,分别对含TiO2及Pd的催化剂进行了探索性实验。该实验以配置的KNO3溶液为实验水样,在比较研究添加H+、TiO2/Al2O3催化剂、Pd/Al2O3催化剂去除效果的基础上,深入研究了负载量、载体类型、pH、溶解氧、共存离子等因素对去除效果的影响。结果表明,催化剂TiO2/Al2O3对零价铁还原硝态氮的去除率有促进作用,水样pH=3.1时去除率为72%,产物主要为氨氮,应用性较差;而催化剂Pd/Al2O3在pH=3.1时去除率虽为43%,但产物以N2为主。在负载量为5%的情况下,N2转化率为76%,这对去除总氮有重要意义,并从电子转移角度探讨了该反应的反应机理,提出了活性氢(H*)为核心的机理模型。  相似文献   

13.
Li Z 《Chemosphere》2004,54(3):419-423
Oxidative dechlorination of chlorinated solvents by permanganate is an emerging technology for remediation of groundwater contaminated with dissolved chlorinated contaminants. In this study, the enhancement of trichloroethylene (TCE) degradation by permanganate in aqueous solution in the presence of surfactant was evaluated through a continuous stir batch reactor system with the presence of permanganate as the limiting reagent and free phase TCE. The TCE degradation was determined by continuous monitoring the amount of chloride produced, which was then reverted to the rate of permanganate consumption. It was found that the chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO(4) in the presence of free phase TCE. When no surfactants were present, the observed pseudo-first-order rate constant (k(obs)) was 0.08-0.19 min(-1) and the half-life (t(1/2)) was 4-9 min for MnO(4)(-). When the surfactant concentration was less than its critical micelle concentration (CMC), the k(obs) values increased to 0.42-0.46 min(-1) and the t(1/2) reduced to 1.5-1.7 min for MnO(4)(-). As the surfactant concentration was greater than the CMC, the k(obs) values increased to 0.56-0.58 min(-1) and the t(1/2) reduced to 1.2-1.3 min. The preliminary results showed that combination of permanganate with a proper type of surfactant can speed up contaminant removal.  相似文献   

14.
以地水中的氯代烃污染物三氯乙烯(TCE)为目标污染物,以过硫酸钾溶液为氧化剂,探讨了不同条件下过硫酸钾对TCE的去除效果。实验结果表明,在40℃,过硫酸钾初始浓度为2.43 g/L条件下,反应2 h后,TCE的去除率就可达到96.8%;过硫酸钾对TCE的去除符合一级反应动力学方程,速率常数(K)为1.3364 h-1,半衰期(t1/2)为0.51 h;过硫酸钾对TCE的去除速率在pH为中性附近时最大,其后无论pH升高或降低去除速率均减小;受温度和pH影响较明显,并且反应温度越高,受pH的影响越明显;随离子强度的增加而减小;反应活化能为119.6 kJ/mol;过硫酸钾溶于水生成过硫酸根离子(S2O28-),S2O28-会进一步生成硫酸根自由基(SO4-.),在碱性条件下,SO4-.与OH-反应会进一步生成羟基自由基(.OH)。过硫酸钾对于TCE的去除主要源自SO4-.和.OH的强氧化性。  相似文献   

15.
为解决船舶柴油机SCR催化剂积碳再生问题,提出了臭氧直接氧化再生的方法。实验用玻璃纤维无胶滤筒采集PM,然后在管式炉中用臭氧氧化滤筒中的PM,研究了温度和臭氧浓度对PM氧化的影响。实验表明,臭氧的最佳氧化温度窗口为200~240℃,PM氧化速度随臭氧浓度提高明显加快,PM氧化率可以达到92%以上。根据实验结果,提出了船舶柴油机SCR积碳O3低温再生技术方案。  相似文献   

16.
An innovative haloacetic acid (HAA) removal process was developed. The process consisted of a zero-valent iron (Fe0) column followed by a biologically active carbon (BAC) column that were efficient in degrading tri- and di-HAAs, and mono- and di-HAAs, respectively. The merit of the process was demonstrated by its performance in removing trichloroacetic acid (TCAA). An empty bed contact time of 10 min achieved nearly complete removal of 1.2 μM TCAA and its subsequent products, dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA). HAA removal was a result of chemical dehalogenation and biodegradation rather than physical adsorption. Preliminary kinetic analyses were conducted and the pseudo-first-order rate constants were estimated at ambient conditions for Fe0 reduction of TCAA and biodegradation of DCAA and MCAA by BAC. This innovative process is highly promising in removing HAAs from drinking water, swimming pool water, and domestic or industrial wastewater.  相似文献   

17.
采用液相还原法制备出纳米铁粒子,并与自养反硝化细菌耦合,以解决单独使用生物反硝化和纳米铁还原法的不足。本实验在纳米铁-微生物耦合体系可以有效还原硝酸盐的基础上,研究了pH、温度和DO等环境因素对该耦合体系脱氮速率和产物的影响,以期通过优化参数达到最好的脱氮效果。结果表明,该体系在中性条件下能够快速将硝酸盐还原,随pH升高,氨氮比例无显著变化,均在40%左右,但还原速率有所下降;随温度的升高,氨氮比例有所上升,而反应速率明显升高,但该体系在5℃时仍能将硝酸盐完全去除;耦合体系中的DO过高或过低都会导致产物中氨氮比例的增加,0.4 mg/L左右为较适宜DO水平,但对硝酸盐还原速率的影响不大,当DO为0.8 mg/L时,硝酸盐仍可以在8 d内完全去除。因此,该耦合脱氮体系对pH、温度和DO的适应能力较强,有利于实际地下水的原位修复。  相似文献   

18.
The main object of the study was the development of a long-term efficient and inexpensive in-situ immobilization technology for uranium (U) and arsenic (As) in smaller and decentralized groundwater discharges from abandoned mining processing sites. Therefore, corrosion of grey cast iron (gcFe) and nano-scale iron particles (naFe) as well as hydrogen stimulated autotrophic sulphate reduction (aSR) were investigated. Two column experiments with sulphate reducing bacterias (SRB) (biotic gcFe , biotic naFe) and one abiotic gcFe-column experiment were performed. In the biotic naFe column, no particle translocation was observed and a temporary but intensive naFe corrosion indicated by a decrease in E(h), a pH increase and H(2) evolution. Decreasing sulphate concentrations and (34)S enrichment in the column effluent indicated aSR. Fe(II) retention could be explained by siderite and consequently FeS precipitation by geochemical modeling (PhreeqC). U and As were completely immobilised within the biotic naFe column. In the biotic gcFe column, particle entrapment in open pore spaces resulted in a heterogeneous distribution of Fe-enriched zones and an increase in permeability due to preferential flow. However, Fe(II) concentrations in the effluent indicated a constant and lasting gcFe corrosion. An efficient immobilization was found for As, but not for U.  相似文献   

19.
通过生物降解实验考察三氯乙烯(TCE)在苯酚驯化微生物中的共代谢降解性能,并进行动力学分析。结果表明,苯酚是TCE-苯酚共代谢过程必不可少的共代谢基质;TCE的共代谢降解与苯酚和TCE初始浓度有关。TCE在降解初期会出现一个短暂的迟滞期,TCE的大量降解要在苯酚被利用后才发生;高质量浓度TCE(>9mg/L)对共代谢降解有抑制作用。苯酚/TCE(质量比)在10~15以上时,苯酚菌对TCE的去除率较大。Haldane模型能够很好地拟合苯酚和TCE的比降解速率。动力学分析表明,微生物对苯酚的亲和力要大于TCE,苯酚对TCE共降解具有竞争性抑制作用,TCE对微生物存在毒性抑制作用;结果证实了生物降解实验的结论。  相似文献   

20.
The biosorprion and biodegradation of trichloroethylene (TCE) was investigated. The experimental results showed that at 25°C the adsorption equilibrium of TCE at concentrations from 10 mg/L to 200 mg/L could be described by the Freundlich isotherm. Adsorption could complete within 15 min. Results indicated that glucose could serve as a co-substrate and enhance TCE biodegradation through co-metabolism. The TCE biodegradation conformed to the first-order reaction kinetic, and the rate constant was 0.3212 day−1 at 25°C. In addition, results also indicated that TCE could serve as the sole substrate and be biodegraded under aerobic condition. No intermediate products such as DCE and VC were accumulated during the degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号