首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
采用小试装置的上向流石英砂反硝化生物滤池,进行碳源、碳氮比、滤速3个因素正交试验,考察反硝化生物滤池中亚硝酸盐的积累量和积累位置情况。结果表明,低滤速(0.5 m/h)出水亚硝酸盐积累率之和高于高滤速(10 m/h)。葡萄糖、甲醇、乙酸钠分别为碳源时,反硝化生物滤池的内部最大积累率分别出现在反硝化生物滤池进水端120~190 cm,80~140 cm,0~40 cm的滤层。滤池内部亚硝酸盐积累率的正交试验极差分析,极差值R_(C/N)R_(滤速)R_(碳源类型)。C/N因素对反硝化生物滤池内部亚硝酸盐积累影响显著。葡萄糖、甲醇、乙酸钠分别为碳源时出水亚硝酸盐积累率之和分别19.2%,10.8%,4.5%。  相似文献   

2.
采用有效容积为6.3 L的上流式流化床接种普通污泥,进行了厌氧氨氧化反应器的启动,研究了先富集反硝化污泥再启动厌氧氨氧化反应器的过程特征。首先投配硝氮质量浓度70 mg/L、以葡萄糖为碳源、COD为200 mg/L的模拟废水增强污泥的反硝化能力。运行6 d后,出水硝氮质量浓度在10 mg/L左右,反应器对硝氮的去除率稳定在80%以上,污泥具有较高的反硝化活性。随后投配氨氮质量浓度50~60 mg/L、亚硝氮质量浓度30~58 mg/L的废水进行厌氧氨氧化菌培养。培养一开始出水氨氮质量浓度就比进水低,第31 d氨氮的去除率达到50%以上。逐步提高进水氨氮和亚硝酸氮质量浓度,从100 mg/L、140 mg/L、200 mg/L到420 mg/L,氨氮和亚硝氮去除率亦不断提高。第40 d后,反应器氨氮去除量、亚硝氮去除量和硝氮增加量之比在1∶(1.3±0.2)∶(0.3±0.1)范围内小幅波动,表明厌氧氨氧化反应已经成为反应器内的主导脱氮反应。经过76 d的培养,在进水氨氮和亚硝氮质量浓度分别为405.23 mg/L和488.24 mg/L时,反应器对它们的去除率达到80%和95.22%,最大氮去除速率为0.93 kg/(m3·d)。研究表明,采用上流式流化反应器先富集反硝化菌再培养厌氧氨氧化菌和采用逐步提高进水负荷的启动策略,对于快速培养高活性Anammox污泥、启动反应器是有效的。  相似文献   

3.
本试验以生活污水处理厂CASS池活性污泥为接种污泥,通过好氧-高效沉淀组合反应器进行AOB菌的富集驯化,并用驯化后的污泥对高氨氮稀土废水进行批次试验研究。以人工配水作为模拟废水进行的AOB菌筛选与驯化试验共运行32 d,进水总氮负荷从0.29 kg/(m3·d)提升至5.25 kg/(m3·d),亚硝态氮积累率达90%以上。驯化完成后,用广西某稀土冶炼企业所产生的稀土废水作为进水共进行4个批次试验,考察短程硝化对稀土废水的去除效果。结果表明,经过一个月的培养驯化,短程硝化污泥对高氨氮稀土废水具有较高的转化效果,出水亚硝态氮积累率较高,出水亚硝态氮与氨氮比值约为1.32左右,符合厌氧氨氧化反应器进水的要求。  相似文献   

4.
应用MSBR硝化反硝化和UASB厌氧氨氧化串联工艺进行养殖废水处理研究。通过控制pH值8.0,溶解氧1.5 mg/L、游离氨10~20 mg/L,实现了曝气池亚硝氮积累率在60%以上;同时,UASB出水100%回流比至MSBR反应池,实现废水有机质、氮、磷循环有效去除。MSBR对系统COD,TN,TP去除贡献率分别为93%,75%~85%,70%~85%,UASB对系统COD,TN,TP去除贡献率分别为3%~7%,15%~30%,10%~20%。  相似文献   

5.
反硝化生物滤池因其脱氮效果好、出水稳定等特点在污水再生处理过程中得到广泛应用。实际运行中发现,反硝化生物滤池出水经后续工艺处理后色度常常难以达标。反硝化脱氮过程存在亚硝酸盐积累的现象,进水NO_3~--N质量浓度为25 mg/L、碳源投加量为90mg/L时,反硝化滤池出水NO_2~--N质量浓度为2.87 mg/L。以反硝化生物滤池与臭氧氧化组合工艺为研究对象,开展了反硝化过程中亚硝酸盐累积对臭氧及次氯酸钠脱色的影响研究。结果表明,亚硝酸盐累积不利于后续臭氧氧化脱色过程,当反硝化生物滤池出水NO_2~--N质量浓度为3.98 mg/L、臭氧投加剂量为3 mg/L和5 mg/L时,出水色度分别为20.6和17.3,无法满足GB/T 19772—2005《城市污水再生利用地下水回灌水质》的要求(色度15)。通过投加5 mg/L的NaClO预氧化、再投加5 mg/L的臭氧使出水色度达到14.1。  相似文献   

6.
为明确厌氧氨氧化和反硝化协同脱氮除碳过程,采用ABR反应器控制进水氨氮和亚硝酸盐氮质量浓度分别为75 mg/L、110 mg/L,研究在不同进水COD浓度下脱氮除碳效果。结果表明,在ABR反应器的不同隔室脱氮除碳途径存在差异,低浓度COD(质量浓度120 mg/L)为Anammox菌和反硝化菌之间良好的协同作用提供了保障从而实现稳定高效脱氮除碳,TN和COD去除率分别在98%和79%以上,但在高进水COD(质量浓度120 mg/L)条件下,异养反硝化作用增强使得COD去除率可达到92%,Anammox受到限制致使总氮去除率降至70%。  相似文献   

7.
为了研究厌氧-微氧-好氧系统对垃圾渗滤液厌氧出水高效生物脱氮性能,基于短程硝化反硝化技术,设置5个阶段分析DO质量浓度(0. 2~1. 5 mg/L)、进水C/N(4~8)和亚硝化液回流比(300%~1 500%)对系统的影响,同时,通过快速提高进水NH_4~+-N负荷进一步研究反应器抗负荷冲击能力。结果表明,微氧区添加5 mmol/L KClO_3,能够快速提升系统亚硝化率;微氧区DO质量浓度保持0. 5~1. 0mg/L,亚硝化率高于90%。提高进水C/N和亚硝化液回流比(R)有利于反硝化过程充分进行,好氧池的设置能够使系统保持较高的COD和NH_4~+-N去除率,整个过程系统COD、NH_4~+-N和TN的平均去除率分别达89. 2%、98. 6%和82. 3%。此外,系统在短期负荷冲击下污染物去除率降低,当进水NH_4~+-N负荷快速提升时,TN去除率由90%下降到76%。然而,经过10 d的恢复期,系统可以恢复到原来的状态,并具有较高的性能。  相似文献   

8.
使用缓释碳源生态基质颗粒开展了高氨氮废水脱氮效果实验,比较了装填缓释碳源生态基质的反应器与装填普通砾石填料的反应器对高氨氮废水中各种形态氮的去除效果。生态基质组出水NH3-N和TN去除率分别为49. 08%和58. 32%,明显高于砾石组38. 69%和28. 67%的去除率,硝态氮和亚硝态氮浓度也明显低于砾石组,说明缓释碳源生态基质可显著增强反硝化作用强度。高通量分析结果表明,生态基质组的物种丰富度高于砾石组,其中反硝化菌属相对丰度达到30%以上,生态基质释放的碳源有利于异养反硝化微生物的生长繁殖,使反应器内的微生物群落结构发生显著改变,提高了脱氮效率。  相似文献   

9.
为了揭示反硝化菌强化潜流湿地的污水处理厂尾水脱氮效果及机理,以砾石、红砖碎块、钢渣、陶粒、土壤为湿地填料,茭白、梭鱼草、黑麦草、红叶石楠为湿地植物,构建了两套湿地系统,其中一套投加菌剂,另一套作为对照组,使用双总体t检验方法分析了投加反硝化细菌B8(Pseudomonas putida)菌液于水平潜流湿地系统的操作与生物强化湿地脱氮程度之间的相互关系。结果表明,将反硝化菌(B8)菌液连续14 d投加于水平潜流湿地后,在强化潜流湿地运行的58 d内,其NH_4~+-N、NO_2~--N和TN平均去除率分别为65.3%、94.2%和71.5%;而未投菌的潜流湿地的NH_4~+-N、NO_2~--N和TN平均去除率分别为28.2%、74.7%和43.1%,加入菌剂使潜流湿地氮素去除能力大幅提高。双总体t检验方法分析表明,在停止投菌运行的41 d内,接种B8细菌的湿地系统的总氮去除率显著高于未投菌的湿地系统(p0.05);但在停止投菌运行的58 d内,投菌湿地和未投菌湿地脱氮效果的差异不显著(p0.05),因此确定B8强化水平潜流湿地系统的投菌周期为58 d。  相似文献   

10.
曝气生物滤池内的短程硝化研究   总被引:2,自引:0,他引:2  
以曝气生物滤池为载体,研究了NH4 -N浓度、pH、FA、DO对曝气生物滤池内NO2--N积累的影响及沿滤池高度NO2--N积累情况.试验表明,在一定的条件下,曝气生物滤池内发生了同步硝化反硝化和短程硝化反硝化,且在某高度处可以实现较高的氨氮去除率和NO2--N积累率.  相似文献   

11.
筛选出了一株适用于石化污水处理的异养硝化-好氧反硝化产微生物絮凝剂菌株HAD-2,鉴定其为门多萨假单胞菌(Pseudomonas mendocina),考察了其最佳硝化条件、反硝化性能及在模拟污水中的脱氮能力。菌株为耐热菌,偏碱性(pH=8.5)和高碳氮比(25∶1)时硝化性能最佳。在异养硝化体系中,12 h时菌株对氨氮的去除率达到92.29%,硝酸盐和亚硝酸盐积累少;在反硝化体系中,12 h时菌株对亚硝酸盐和硝酸盐的去除率分别达到86.40%和84.92%;在模拟废水中,48 h时菌株对氨氮、硝态氮和亚硝态氮的降解率分别达到95.25%、65.47%和72.40%。菌株在多种培养基中可产微生物絮凝剂,在葡萄糖培养基中絮凝能力最佳,絮凝率为94%。  相似文献   

12.
为了提高单级自养脱氮工艺的脱氮性能及稳定性,采用SBBR反应器,通过连续试验及间歇试验研究了曝气量对单级自养脱氮系统脱氮效率及脱氮负荷的影响,分析了反应器内不同曝气条件下氨氮降解特征、亚硝酸盐质量浓度与氨氮降解速率的关系,并探讨了污泥的亚硝酸盐氧化活性与SBBR反应器稳定性的关系。连续试验结果表明,曝气量从48 L/h提高到88 L/h,总氮平均去除率由72.46%增长至93.00%,总氮平均去除负荷由0.29 kg N/(m3·d)提高至0.57kg N/(m3·d)。间歇试验结果表明:氨氮降解速率随曝气量增加而提高,出水氨氮及总氮质量浓度随曝气量增加而降低;同时曝气期DO质量浓度随曝气量增加而有所升高;在整个SBBR周期内未出现亚硝酸盐积累的现象,亚硝酸氮质量浓度一直较低(低于2.00mg/L),向反应器中添加亚硝酸盐可以促进氨氮的降解;随曝气量增加,由于污泥的亚硝酸盐氧化活性较低,硝化作用产生的硝酸盐并未大幅增长,系统表现出了较好的稳定性;氨氮未完全降解时,反应器内DO质量浓度曲线缓慢下降或基本保持不变,当氨氮完全被去除时,系统不再耗氧,DO质量浓度迅速升高,曲线出现拐点,DO拐点对单级自养脱氮控制有重要参考价值。  相似文献   

13.
An autocontrol two-stage hybrid process was developed to treat landfill leachate. Biological nitrogen removal with nitrification and denitrification via nitrite pathway was split into two stages. The first stage was designed for the high nitrite accumulation and was composed of two hybrid bed reactors (Hybrid I and Hybrid II) and a coagulation–flocculation reactor having effective volumes of 120 L and 80 L, respectively. The second stage was designed for strengthening denitrification and included a single 80 L reactor. The carriers of the hybrid bed reactors were composed of fixed multiple flexible carriers and suspended particle carriers. Dissolved oxygen (DO), pH value, oxidation–reduction potential (ORP) and temperature were used as online fuzzy control parameters of the automatic control system. The concentration of nitrite in Hybrid I and Hybrid II could reach 411 mg L−1 and 604 mg L−1, respectively. Ammonia removal has reached maximal rates of 0.061 kgNH4+-N (m3 h)−1 and 0.041 kgNH4+-N (m3 h)−1, respectively. A maximum nitrite removal rate of 0.211 kgNO2-N (m3 h)−1 was observed during the strengthening denitrification. The running time of one cycle was not fixed and was actually controlled by the system. The results indicated that the running period was more closely related to influent ammonia concentration than influent COD concentration. The aeration times could be shortened and the energy could be saved. The autocontrol two-stage hybrid process is therefore an economical and effective way for landfill leachate treatment.  相似文献   

14.
改进的MBR对渗滤液的TN和NH3-N平均去除率分别达72.98%和90.1%。试验现象和数据表明,同步硝化反硝化是TN和NH3-N去除的最主要原因。同步硝化反硝化的发生在于3个方面:①膜的截留作用能使世代时间较长的硝化菌和反硝化菌富集;②在MBR内,废水在时间顺序上和空间位置上反复经历缺氧、好氧环境;③有利的操作条件,如维持MBR内MLSS为8 500 mg/L左右、温度为22~30℃、pH值为7.0~7.5、升流区的DO为2~2.5 mg/L等。  相似文献   

15.
研究碳源和硝酸盐对填加聚氨酯载体的SBBR反硝化除磷的影响。在SBR中填加聚氨酯载体,将生物膜法和活性污泥法相结合,形成序批式生物膜反应器(SBBR),在厌氧/缺氧交替运行条件下利用NO3-作为电子受体,研究NaAc浓度、NaAc与丙酸钠的比例、NO3-浓度及NO3-投加方式等因素对除磷效果的影响。PO43-质量浓度在9~11 mg/L之间,COD质量浓度为200 mg/L时,SBBR有较佳的除磷效果;当进水NaAc与丙酸钠配比为2时,进水COD自身降解速率较慢,且不影响除磷效果;分批次(这里分2次)投加硝酸盐有利于硝酸盐向亚硝酸盐的转化;NO3-质量浓度为65 mg/L左右时,能获得较好的除磷、除氮效果。填加聚氨酯载体的SBR装置除磷效果较理想;碳源和硝酸盐对SBBR反硝化除磷影响显著。  相似文献   

16.
Granulation of nitrifying bacteria was investigated in a continuous bubble column bioreactor. Then, the combined effect of aeration and ammonium loading rates on dissolved oxygen (DO) concentration as well as nitrification process was evaluated in the system using an experimental design technique. After 120 days, stable nitrifying granules with average diameter of 1.4 mm and settling velocities of 55 m/h were obtained. The influence of increasing ammonium loading rate (ALR) was found to be more significant than decreasing aeration rate on the reduction of DO concentration inside the nitrifying bioreactor. The system could handle the ALR values of 0.48–1.92 gNH4+-N/L d with the ammonium removal efficiency from 65% to nearly 100% at the tested airflow rates of 2.5 and 4.5 L/min. At the low aeration, the complete ammonium conversion to nitrate was replaced with nitrite when the ALR increased to 1.44 gNH4+-N/L d. At the high aeration, however, almost complete nitrification was achieved except the high ALR in which the nitrite accumulation was observed up to 38%. The study demonstrated that the continuous bioreactor had a considerable performance for obtaining stable nitrifying granules to have nitrite accumulation under control with changing the ratio of aeration rate and ALR.  相似文献   

17.
生物慢滤技术用于农村饮水处理的研究   总被引:6,自引:0,他引:6  
研究了适用于我国农村的小型分散式饮水处理技术--生物慢滤技术.用玉渊潭引水渠的微污染河水模拟研究了滤料粒径、滤料高度等因素对生物慢滤处理效果的影响,以及生物慢滤池对农村水环境中常见的污染物如重金属、有机物、氨氮、浊度、细菌等的去除.实验结果表明:1)在滤料表面形成稳定成熟的生物粘膜所需的时间与滤料粒径有关;2)滤料表面一旦形成稳定成熟的生物粘膜,氨氮、有机物、浊度等的去除率与滤料粒径关系不大;但细菌的去除效果与滤料粒径有很大的关系,滤料粒径越小,对细菌的去除效果越好.3)滤料高度对有机物、氨氮的处理效果有一定的影响,但慢滤池对这些污染物的去除主要发生在50 cm高度内;4)生物慢滤对TOC的去除率为20%~30%,对氨氮的去除率为90%以上,对Cu2 、Cd2 、Fe2 、Zn 2 、Mn2 和Pb2 的去除率分别在97%、95%、95%、88%、70%和60%以上;5)Ⅲ至Ⅴ类微污染水经生物慢滤处理后,不经消毒即可达到生活饮用水的卫生标准.  相似文献   

18.
影响短程硝化反硝化的因素   总被引:16,自引:1,他引:16  
短程硝化反硝化是指将硝化过程控制在亚硝化阶段,随后在缺氧条件下进行反硝化的生物脱氮过程,其关键是如何控制硝化过程中影响HNO2积累的因素,分析影响HNO2积累因素,包括温度、游离氨、pH值、溶解氧、有害物质和泥龄,探讨实现短程硝化反硝化的途径。  相似文献   

19.
Biological control of odor gases has gained more attention in recent years. In this study, removal performance of a vertical bio-trickling filter inoculated with bacteria and fungi was studied. Bacteria and fungi were isolated from activated sludge in a sewage treatment plant. By adopting “three step immobilization method”, the bio-trickling filter could degrade pollutant immediately once hydrogen sulfide (H2S) passed. The optimal empty bed resident time was 20 s. The optimal elimination capacity was about 60 g H2S m?3 h?1 with removal efficiency of 95%. And the maximum elimination capacity was 170 g H2S m?3 h?1. Pressure drop was ranged between 5 and 15 mm H2O per bed over the whole operation. Removal efficiency was not affected obviously after terminating nutrient supply. The bio-trickling filter could recover back after shut down H2S gaseous and liquid supplies simultaneously. Microbial community structure in the bio-trickling filter was not changed significantly.Combining bacteria and fungi would be a better choice for inoculation into a bio-trickling filter because of the quickly degradation of H2S and rapid recovery under shut-down experiment. This is the first study attempting to combine bacteria and fungi for removal of H2S in a bio-trickling filter.  相似文献   

20.
反硝化细菌抑制石油集输系统中硫酸盐还原菌试验研究   总被引:1,自引:0,他引:1  
建立了两个UASB反应器(UASB-1和UASB-2)。其中UASB-1模拟石油集输系统中硫酸盐还原菌的生存环境,强化系统中硫酸盐还原菌的滋生,使其不断产生硫化氢气体。该系统的液体进入后续UASB-2厌氧反应器,其主要作用是在其中形成反硝化作用的环境条件,以控制石油输集系统中不断滋生的硫酸盐还原菌,从而达到控制硫化氢气体的目的。结果表明,硫酸盐还原菌的最佳氧化还原电位(ORP)为-370~-300mV,而反硝化细菌的最佳ORP为-150~-50mV。向系统中投加亚硝酸钠可迅速增加反应器中的ORP,并为反硝化细菌提供充足的氮源。当系统中的w(SO24-)∶w(NO2-)=8∶1.2时,抑制效果最佳,可以将硫化氢的产生降低至10%。运用16S rDNA基因克隆-变性梯度凝胶电泳分析方法研究了系统中微生物种属的变化情况。结果表明,反硝化细菌能够有效抑制系统中硫酸盐还原菌繁殖,系统中3种典型硫酸盐还原菌(脱硫弧菌属、脱硫肠状菌属、脱硫单胞菌属)逐渐消失,同时反硝化细菌的种属和数量都显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号