共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration of As, Cr and Ni and their speciation (As3+;5+, Cr3+;6+ and Ni0;2+) in milled coal, bottom ash and ash collected by electrostatic precipitator (ESP) from a coal fired-power plant in western Canada were determined using HGAAS, ICP-AES and XANES. The chemical fractionation of these elements was also determined by a sequential leaching procedure, using deionized water, NH4OAC and HCI as extracting agents. The leachate was analyzed by ICP-AES. Arsenic in the milled coal is mostly associated with organic matter, and 67% of this arsenic is removed by ammonium acetate. This element is totally removed from milled coal after extraction with HCI. Arsenic occurs in both the As3+ and the As5+ oxidation states in the milled coal, while virtually all (>90%) of the arsenic in bottom ash and fly ash appears to be in the less toxic arsenate (As5+) form. Both Ni and Cr in the milled coal are extracted by HCI, indicating that water can mobilize Ni and Cr in an acidic environment. The chromium is leached by water from fly ash as a result of the high pH of the water, which is induced during the leaching. Ammonium acetate removes Ni from bottom ash through an ion exchange process. Chromium in milled coal is present entirely as Cr3+, which is an essential human trace nutrient. The Cr speciation in bottom ash is a more accentuated version of the milled coal and consists mostly of the Cr3+ species. Chromium in fly ash is mostly Cr3+, with significant contamination by stainless-steel from the installation itself. 相似文献
2.
Narukawa T Riley KW French DH Takatsu A Chiba K 《Journal of environmental monitoring : JEM》2003,5(5):831-836
A basic investigation of boron in discharged fly ash by coal fuel thermal power plants in several worldwide locations was carried out. Eight kinds of fly ash sample were prepared from eight coal fuel thermal power plants. Two of the fly ash samples were used to examine the relationship between the concentration of boron in fly ash and the particle size. When the particle size of fly ash is smaller, there is a possibility that it will be released into the air and spread over a wide area in the environment. However, it has become apparent that fly ash of smaller particle size has a higher concentration of boron and a higher enrichment factor. In other fly ash samples, the boron contents were examined and leaching tests were carried out. There is acidic fly ash as well as alkaline fly ash that contains larger amounts of acidic or basic salts. On alkaline fly ash, when the concentration of boron bound to Fe-Mn oxide is low; it has become apparent that leaching boron is increased in a solution with lower pH of approximately 4 which is nearly the pH of acid rain. 相似文献
3.
Vikas Eknath Mahajan Raju Ravindra Yadav Narayan Purushottam Dakshinkar Vinod Madanlal Dhoot Gautam Ramkrishna Bhojane Madhura Kiran Naik Preeti Shrivastava Pravin Krishnarao Naoghare Kannan Krishnamurthi 《Environmental monitoring and assessment》2012,184(12):7365-7372
Cattle grazing nearby coal-fired power stations are exposed to fly ash. The present investigation aims to assess the environmental and health impacts of fly ash containing mercury emitted from thermal power plant. The health effect of fly ash were studied using 20 lactating cattle reared within a 5-km radius of s thermal power plant for the possible effect of fly ash such as the alterations in hematological and biochemical parameters of blood, milk, and urine. Results indicated that the hemoglobin levels (6.65?±?0.40?g/dl) were significantly reduced in all the exposed animals. Biochemical parameters viz., blood urea nitrogen (27.35?±?1.19?mg/dl), serum glutamate oxaloacetate transaminase (43.39?±?3.08?IU/l), albumin, and creatinine were found to be increased, whereas serum glutamate pyruvic transaminase (29.26?±?2.02) and Ca2+ were observed to be statistically insignificant in exposed animals. Mercury concentrations estimated in the blood, milk, and urine of exposed (n?=?20) and control (n?=?20) animals were 7.41?±?0.86, 4.75?±?0.57, 2.08?±?0.18, and 1.05?±?0.07, 0.54?±?0.03, 0.20?±?0.02?μg/kg, respectively. The significant increase (P?<?0.01) in the levels of mercury in blood, milk, and urine of exposed animals in comparison to control indicated that the alterations of biochemical parameters in exposed cattle could be due to their long term exposure to fly ash mercury which may have direct or indirect impact on human populations via food chain. 相似文献
4.
Duester L Diaz-Bone RA Kösters J Hirner AV 《Journal of environmental monitoring : JEM》2005,7(12):1186-1193
Methylated species of antimony, arsenic and tin were examined in urban soils of the Ruhr basin, near the cities of Duisburg and Essen, Germany. The main aim of this study was to investigate the occurrence of mono-, di- and trimethylated species of these elements in urban soils. The influence of historical and present land use upon the species content was examined. The distribution of inorganic As, Sb and Sn and their methylated species along the profile depth was investigated. As, Sb and Sn speciation was performed by pH-gradient hydride generation purge and trap gas chromatography, followed by inductively-coupled plasma mass spectrometry (HG-PT-GC/ICP-MS). Species' structures were confirmed by GC-EI/MS-ICP-MS. Monomethylated Sb and As were the dominant species detected: the concentration of these metal(loid) species varied between <0.07-56 microg kg(-1) per dry mass. All dimethylated species and monomethyltin concentrations were between <0.01-7.6 microg kg(-1) per dry mass, and for the trimethylated species of all examined elements, concentrations between <0.001-0.63 microg kg(-1) per dry mass were detected. The highest organometal(loid) concentrations were observed in agricultural soils and garden soils; lower concentrations were found in the soils of abandoned industrial sites (wasteland, primary forest and grassland) and a flood plain soil of the Rhine. This result can be ascribed to both the cultivation and the increased biological activity of the agricultural soils, and the generally higher contamination, the disturbed structure and the artificial substrates (deposits from industrial sources) of the abandoned industrial soils. Due to periodical sedimentation, the flood plain profile was the only one where no depth dependence of organometal(loid) species concentration was detected. The other soil profiles showed a decrease of species content with increasing depth; this was particularly noticeable in soils with a clear change from a horizon with an organic character towards a mineral horizon, i.e. decreasing vitality from profile top to bottom. It is not as yet clear whether the organometal(loid) species are formed in the mineral horizons of the profiles or whether they are displaced from the organic, biologically-active horizons towards the mineral horizons. Field studies revealed that soil parameters like pH, water content or temperature did not correlate significantly with the degree of biomethylation observed. In contrast to the lower in vitro biomethylation efficiency of Sb vs. As in microbial incubations, we consistently detected higher proportions of transformed Sb compounds in situ in soil samples. These data may indicate a need to re-examine the currently accepted model of Sb biogeochemical cycling in the real environment. 相似文献
5.
Amid P. Khodadoust Thomas L. Theis Ishwar P. Murarka Pratibha Naithani Kamel Babaeivelni 《Environmental monitoring and assessment》2013,185(12):10339-10349
The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment. 相似文献
6.
A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find
out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally
growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were
found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely,
Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November–December). Bioaccumulation of metals in root and shoot portions were found
varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA
and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and
Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn
have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while
other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon. 相似文献
7.
Pavlos Megalovasilis Georgios Papastergios Anestis Filippidis 《Environmental monitoring and assessment》2013,185(7):6071-6076
The Kozani–Ptolemais–Amyntaio basin constitutes the principal coal field of Greece. Approximately 50 % of the total power production of Greece is generated by five power stations operating in the area. Lignite samples, together with the corresponding fly ash and bottom ash were collected, over a period of 3 months, from the power plant of Amyntaio and analyzed for their content in 16 trace elements. The results indicate that Y, Nb, U, Rb, Zr, Ni, Pb, Ba, Zn, Sr, Cu, and Th demonstrate an organic affinity during the combustion of lignite, while V has an inorganic affinity. Three elements (Co, Cr, and Sc) show an intermediate affinity. 相似文献
8.
Lignite powered electric generation plants result in increasing environmental problems associated with gaseous emissions and
the disposal of ash residues. Especially, low quality coals with high ash content cause enormous quantities of both gaseous
and solid fly ash emissions. The main problem is related to the disposal of fly ash, which, in many cases, contains heavy
metals. It is known that toxic trace metals may leach when fly ash is in contact with water. In this study, fly ash samples
obtained from the thermal power plant in the town of Can in Turkey were investigated for leachability of metals under different
acidic and temperature conditions. The experimental results show that a decrease in pH of the leachant favors the extraction
of metal ions from fly ash. A significant increase in the extraction of arsenic, cadmium, chromium, zinc, lead, mercury, and
selenium ions from the ash is attributed to the instability of the mineral phases. These heavy metals concentrations increase
with respect to increasing acidic conditions and temperature. Peak concentrations, in general, were found at around 30°C. 相似文献
9.
Yasumasa Ogawa Kento Sakakibara Li Wang Koichi Suto Chihiro Inoue 《Environmental monitoring and assessment》2014,186(10):6757-6770
Fourteen different alkaline coal fly ashes (CFAs) were used for the experiment, in which each sample was mixed with water to be 28.6 % of water content (wt/wt) and aged for 1–4 weeks at 10–30 °C. This simple treatment is advantageous for decreases in water-soluble B, F, Cr, and As. Compared to non-aged CFAs, their water-soluble fractions remained 0.56–88 %, 21–85 %, 0.37–93 % and 2.6–88 %, respectively, after aging for a week at 20 °C, although the amounts of Cr and As released from some CFA samples increased. Considering the significant decrease in elution of sulfate, Ca and Al after aging, the immobilization, namely prevention of toxic element elution, could be related to formation of secondary minerals such as portlandite, gypsum and ettringite. Immobilization of B and Cr tends to proceed preferentially under colder conditions. Aging at higher temperatures enhances the leachability of Cr in some CFA samples. Contrary to the behavior of B and Cr, water-soluble F effectively decreases under warmer conditions. 相似文献
10.
Foster S Maher W Krikowa F Telford K Ellwood M 《Journal of environmental monitoring : JEM》2005,7(12):1214-1219
This paper describes our experiences with undertaking measurements of total antimony and antimony speciation in algae, plant and animal tissues. Digestion with nitric acid alone is suitable to release antimony from animal tissues. When organisms have high silica contents, e.g. some plants and algae, the addition of tetrafluorboric acid is required to dissolve silica as some antimony is retained by silica in extracts. Antimony in digested extracts is present as Sb5+ and hydride generation procedures can be used to determine total antimony concentrations, as total antimony in extracts will not be under estimated. Relatively non-aggressive solvents such as water, dilute nitric acid, sodium hydroxide and enzymes remove highly variable amounts of antimony (2-84%) from algae, plant and animal tissues. Addition of Sb3+ and Sb5+ to NIST CRM 1572 Citrus Leaves, pre- and post-extraction with water showed that Sb3+ is oxidised to Sb5+ while Sb5+ is redistributed amongst binding sites giving rise to artefacts. DOLT-2 and algae extracts indicated the presence of only inorganic antimony. A moss sample had inorganic antimony and a number of unknown antimony species in extracts. Future studies should explore the nature of the binding of antimony in tissues as solvents commonly used to extract metals and metalloids from algae, plant and animal tissues are not appropriate. 相似文献
11.
Wojciech Franus Magdalena Wdowin Małgorzata Franus 《Environmental monitoring and assessment》2014,186(9):5721-5729
In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm3 of 3 mol?·?dm?3 NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm3 of 3 mol?·?dm?3 NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm3 of 5 mol?·?dm?3 NaOH?+?0.4 dm3 of 3 mol?·?dm?3 NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m2?·?g?1, while for the Na-P1 and sodalite it was 71 and 33 m2?·?g?1, respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq?·?g?1, Na-P1 at 0.72 meq?·?g?1, and sodalite at 0.56 meq?·?g?1. The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination. 相似文献
12.
13.
14.
Ashis Bhattacharjee Haradhan Mandal Madhusudan Roy Joachim Kusz Wolfgang Hofmeister 《Environmental monitoring and assessment》2013,185(10):8673-8683
This paper deals with the physical nature of the fly ashes obtained from two thermal power plants, situated in West Bengal, India. The fly ash samples are characterized by using comprehensive techniques with an emphasis on their ultrafine nature. The particle sizes of the samples are estimated using scanning electron microcopy (SEM) and found to lie within 0.18–5.90 μm. For morphology and compositional analysis, we also use SEM coupled with energy dispersive X-ray spectrometry. From X-ray study of the fly ashes the nature of conglomeration is seen to be crystalline, and the major components are mullite (Al6Si2O13) and quartz (SiO2). The magnetic measurement of the fly ash samples was carried out by SQUID magnetometer. 57Fe Mössbauer spectra are obtained using a conventional constant-acceleration spectrometer with a 57Co/Rh Mössbauer source. The hyperfine parameters obtained, in general, support the findings as made from XRD analysis and provide a quantitative measure of different iron ions present in the samples. The paper presents experimental data on the physical aspects of the fly ash samples of the thermal power plants which comprise coarse, fine, and ultrafine magnetic particulate materials and attempts to provide an exhaustive analysis. 相似文献
15.
Jun Yao WenBing Li FangFang Xia YuanGe Zheng ChengRan Fang DongSheng Shen 《Environmental monitoring and assessment》2012,184(6):3711-3720
Fly ash samples were taken from solid waste incinerators with different feeding waste, furnace type, and air pollution control
device in six cities of Zhejiang province. The solid waste incinerators there constitute one fifth of incinerators in China.
Heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in the fly ash. Moreover, the fly ash samples were extracted by toxicity
characteristic leaching procedure (TCLP). The biotoxicity of the leachate was evaluated by Chlorella pyrenoidosa. High variation and contents were found for both the heavy metals and PCDD/Fs. The contents of Zn, Cu, As, Pb, Cd, Cr, Ni,
and Hg in the fly ash samples varied from 300 to 32,100, 62.1–1175, 1.1–57, 61.6–620, 0.4–223, 16.6–4380, 1.2–94.7, and 0.03–1.4 μg g−1 dw, respectively. The total contents of 17 PCDD/Fs varied from 0.1128 to 127.7939 μg g−1 dw, and the 2,3,7,8-TeCDD toxic equivalents (TEQ) of PCDD/Fs ranged from 0.009 to 6.177 μg g−1 dw. PCDF congeners were the main contributor to the TEQ. The leachate of the fly ash showed biotoxicity to C. pyrenoidosa. A significant correlation was found between the Cd and EC50 values. Further research is required to investigate the environmental impact of the various pollutants in the fly ash. 相似文献
16.
De Gregori I Fuentes E Rojas M Pinochet H Potin-Gautier M 《Journal of environmental monitoring : JEM》2003,5(2):287-295
This paper reports a comparative study of the concentration of three important environmental elements that are often found together in mineral deposits and then associated with mining activities; copper, arsenic and antimony. These elements were determined in 26 different agricultural soils from regions I, II and V in Chile, zones where the most important and biggest copper industries of this country are located. As background levels of these elements in soils have not been well established, in this study, both, impacted and non-impacted agricultural soils from different regions were considered. The relationships between the concentrations of these elements in soils were also examined. The concentration ranges for copper, arsenic and antimony were 11-530; 2.7-202 and 0.42-11 mg kg(-1) respectively. The copper concentrations in non-polluted soils from the north and central zone of Chile were similar. However, three sites from the north region have copper concentration as higher as 100 mg kg(-1), values that exceed the critical concentration for copper in soils. The concentration of arsenic and antimony in the north soils were higher than in non-impacted ones and, in the case of arsenic, greatly exceeded the world average concentration reported for this element in soils. The highest arsenic and antimony concentrations were found in Calama and Quillagua soils, two different sites in the Loa valley. The arsenic/antimony concentration ratio was higher in Quillagua soil. The high concentrations of three elements determined in impacted soils from region V (Puchuncaví and Catemu valleys) clearly shows the impact produced in this zone by the industrial and mining activities developed in their proximities. At Puchuncaví valley a clear decrease was observed in copper, arsenic and antimony concentrations in soils on the function of the distance from the industrial complex "Las Ventanas", and all concentrations exceeded the reported critical values for this matrix. Instead at Catemu valley, only the copper concentration was higher than this value. Statistically significant correlation was found for Cu-Sb in all soils; more significant Cu-As, Cu-Sb and Sb-As correlations were evaluated for soils from Puchuncaví and Catemu valleys, corroborating that high concentrations of copper, arsenic and antimony in these soils coming from the same pollution sources, the copper industry and the thermoelectric power plant. 相似文献
17.
?eref Turhan ?smail H. Ar?kan Abdullah K?se Ahmet Varinlio?lu 《Environmental monitoring and assessment》2011,177(1-4):555-561
The purpose of this study is to assess potential radiological impacts of utilizing pulverized fly ash (PFA) as a constituent in ordinary Portland cement. For this purpose, the activity concentrations of 226Ra, 232Th, and 40K in samples of PFA and Portland cement containing 15%, 20%, and 25% by mass PFA were measured using gamma-ray spectrometry with HPGe detector. The mean activity concentrations of 226Ra, 232Th, and 40K were found as 366.6, 113.7, and 460.2 Bq kg???1, 94.2, 25.9, and 215.3 Bq kg???1, 113.7, 34.3, and 238.3 Bq kg???1, and 124.2, 41.8, and 279.3 Bq kg???1 for the examined samples of PFA, Portland cement with 15%, 20%, and 25% by mass PFA, respectively. Radiological parameters such as radium equivalent activity, external exposure index (activity concentration index), internal dose index (alpha index), indoor absorbed gamma dose rate, and the corresponding the annually effective dose were assessed for Portland cement samples containing three percentages (15%, 20%, and 25%) by mass PFA. The results of assessment show that all Portland cement samples are within the safe limits recommended for building materials for dwellings. 相似文献
18.
This paper describes the measurement of total antimony and antimony species in "real world" mine contaminated sediments using ICPMS and HPLC-ICPMS. Low and high temperature microwave extraction procedures (90 degrees C and 150 degrees C, respectively) using a range of nitric-hydrochloric acid combinations were examined as to their efficacy to extract antimony from six mine contaminated soils and a certified reference material. The use of the higher temperature with nitric-hydrochloric acid (1:2 (v/v)) was suitable to release antimony from sediments and the certified reference material, NIST 2710 Montana soil. Antimony concentrations obtained using this acid mixture were similar to those obtained using a more aggressive extraction with nitric, hydrochloric, perchloric and hydrofluoric acid mixture. A 25 mM citric acid solution at 90 degrees C for 15 min extracted 47-78% of antimony from soils. A Hamilton PRP X-100 anion exchange column with 20 mM EDTA mobile phase, pH 4.5, flow rate 1.5 mL min(-1) and column temperature of 50 degrees C was used to separate antimony species. Column recoveries ranged from 78-104%. The predominant form of antimony was Sb(5+). Little conversion of Sb(5+) occurred (<5%) during extraction, however, significant conversion of Sb(3+) occurred (approximately 36%). The extraction of antimony species with citric acid should be useful in the determination of inorganic antimony available to plants, as plants commonly excrete carboxylic acids, including citric acid, into their rhizospheres to mobilise trace elements for nutritional purposes. 相似文献
19.