首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Evaluating potential hazards caused by accidental LNG release from underwater pipelines or vessels is a significant consideration in marine transportation safety. The aim of this study was to capture the dynamic behavior of LNG jet released under water and to analyze its vapor dispersion characteristics and combustion characteristics on the water surface during different release scenarios. Controlled experiments were conducted where LNG was jet released from a cryogenic storage tank. The dynamic process of LNG being jet released from orifices of different sizes and shapes, as well as the rising plume structure, were captured by a high-speed camera. The leakage flow rate and pipeline pressure were recorded by a flow meter and pressure gauge, respectively. The concentration distribution that emanated from the water surface was measured utilizing methane sensors in different positions with various wind speeds. The flame combustion characteristics of LNG vapor clouds, which immediately ignited upon the enclosed water tank, were also recorded. Additionally, the mass burning rate of the flame on the water surface was evaluated, and a new correlation between the ratio of flame length and width was established. The results indicated a large dimensionless heat release rate (Q*) and a continuous release flow rate in a limited burning area. This study could provide greater understanding of the mechanisms of LNG release and combustion behavior under water.  相似文献   

2.
主要利用FLACS软件,对水陆两处不同的界面下,LNG在同等气象条件下的扩散情况做了相关研究,利用FLACS软件前置处理器CASD对建立简单模型,拟定计算方案进行模拟仿真,对模拟结果进行整理分析后,得到水陆两个不同扩散层面液化天然气气液两相扩散结果与最大扩散距离。处理数据得到LNG气液两相扩散距离,对比结果可知LNG在水面蒸发速率大于地面蒸发速率且扩散距离远远大于地面扩散距离,可燃区域覆盖面更为宽广,说明水面扩散速率大于地面扩散速率。  相似文献   

3.
为了进一步推广液化天然气(LNG)燃料动力船舶的应用,利用计算流体动力学(CFD)软件FLACS进行LNG燃料动力船进行三维建模,综合考虑环境方面的因素,对LNG的泄漏扩散进行模拟,在此基础上进行爆炸事故后果模拟。对爆炸事故进行分析,得到特定事故情景下的LNG扩散半径、燃烧区域半径、爆炸对人以及建筑物的危害半径,模拟结果对船舶上的管线以及消防设施的布局有一定的指导作用,并且为进一步研究LNG燃料动力船舶的安全性提供了基础数据。  相似文献   

4.
液氨储罐事故性泄漏扩散过程模拟分析   总被引:2,自引:1,他引:2  
液氨是化工企业常用的原料,而每年因为液氨储罐的泄漏造成的事故也十分频繁,液氨属于高度危险性物质,一旦泄漏极可能造成灾难性后果。本文探讨了描述液氨储罐事故性泄漏及扩散过程的数学模型,并用所建模型针对某市化学园区某化工公司液氨储罐工程建设项目进行模拟分析。从模拟结果来看,采用数学模型的方法对事故后果进行预测和分析具有一定程度的可靠性,对于救灾、重大危险源编制应急事故预案以及对新建项目进行危险性预评价都具有一定程度的指导意义。  相似文献   

5.
Risk assessment of a chemical process plant requires the application of a variety of consequence models in order to estimate the potential physical effects of accidental releases. The types of models required vary depending upon the substance under consideration and the circumstances of a release. The objective of this study was the development and application of a system based upon ‘fuzzy logic’, for the selection of a computer model to be used in consequence analysis in specific situations where only certain types of consequence models can be used. The collection of data for modelling purposes from different kinds of computer model and application of fuzzy methods were also important aims of the study.  相似文献   

6.
工业企业事故性泄漏扩散模型   总被引:1,自引:0,他引:1  
对工业企业的泄漏扩散模型的国内外研究情况进行了调查研究,在对各模型优缺点分析的基础上,针对目前工业企业的事故后果模拟评价中所采用泄漏扩散模型存在的问题和不足,提出应用PG扩散模型研究物质泄漏的扩散模式,结合某企业的物质扩散算例说明该模型的实际应用,为工业企业的事故后果模拟评价以及重大事故应急预案的编制提供了一定的参考.  相似文献   

7.
为了评价在开阔水面上的液化天然气(LNG)火灾和蒸气云爆炸灾害后果,分析了LNG水面扩展动态过程;对比分析了Fay模型、FERC模型和计算流体力学软件FLACS的计算结果,探讨了LNG液池面积随时间的动态变化过程,分析了泄漏量、泄漏速率等参数对LNG液池扩展半径的影响;根据液池扩展模型的计算结果,确定了LNG液池的最大面积,并以此分析了LNG流淌火灾的辐射危害。研究结果表明:对于相同的泄漏条件,3种方法模拟的泄漏LNG水面扩展动态过程相似,一般情况下,FLACS模型,FERC模型和Fay模型所计算的最大液池半径依次增大;由于FERC模型与FLACS软件的模拟结果接近且偏于保守,故此在一般的工程应用时,采用FERC模型即可方便快捷地获得较为准确的结果。  相似文献   

8.
张平  袁梅        王玉丽  许石青        李闯 《中国安全生产科学技术》2017,13(12):98-103
为了对LNG接收站选址进行科学评价,综合考虑了环境、政策、交通及经济4方面因素,选取自然条件、安全性及城市发展规划等14个指标作为LNG接收站选址评价指标体系;结合三角模糊熵组合赋权法确定评价指标权重,根据理想点法原理计算理想点贴近度,得到LNG接收站选址评价结果;构建了基于三角模糊熵-理想点法的评价模型,并进行评价模型实例应用。实例应用结果表明:该评价模型的评价结果与LNG接收站选址论证单位的比选结果相一致,验证了该评价模型的可行性和合理性以及评价方法的有效性。该方法为LNG接收站选址评价提供了1种新的思路。  相似文献   

9.
10.
11.
The rapidly growing capacity and scale of the world's petrochemical industries have forced many plants to have an even larger amount of hazardous substances. Once a serious leak occurs, the outcome of the effect zone could be very large or even uncontrollable just like the Bhopal disaster. In order to assess the risk of a cross-regional damage, this study aims to develop a model that can combine the benefits of both CFD model of the microscale simulation and the Gaussian dispersion model of the mesoscale simulation.The developed integrated model is employed on a toxic chemical tank leak accident of a process plant within an industrial park in order to explore the consequences and the risk of the toxic gas dispersion on three different scopes; one is the accident site, the second is the long-distance transmission route of the mesoscale area and the third is a target city. According to the simulation's results, it is obvious that the complexity of the structure surrounding the leaking tank will eventually affect the maximum ground concentration, the cloud shapes and cloud dilution rate, while the released gas is under dispersion. On the other hand, since the simple Gaussian dispersion model doesn't consider the above impacts, its calculation results will have many differences as compared to the realistic situation. This integrated model can be used as a tool for estimating the risk on a microscale or mesoscale areas and it can produce better results when an environmental impact analysis is required for a larger hazardous chemical process.  相似文献   

12.
The first step to be performed during the development of a new industrial process should be the assessment of all hazards associated to the involved compounds. Particularly, the knowledge of all substances thermochemical parameters is a primary feature for such a hazard evaluation. CHETAH (CHEmical Thermodynamic And Hazard evaluation) is a prediction software suitable for calculating potential hazards of chemicals, mixtures or a single reaction that, using only the structure of the involved molecules and Benson's group contribution method, is able to calculate heats of formation, entropies, Gibbs free energies and reaction enthalpies. Because of its ability to predict the potential hazards of a material or mixture, CHETAH is part of the so-called “desktop methods” for early stage chemical safety analysis.In this work, CHETAH software has been used to compile a complete risk database reporting heats of decomposition and Energy Release Potential (ERP) for 342 common use chemicals. These compounds have been gathered into classes depending on their functional groups and similarities in their thermal behavior. Calculated decomposition enthalpies for each of the compounds have also been compared with experimental data obtained with either thermoanalytic or calorimetric techniques (Differential Scanning Calorimeter – DSC – and Accelerating Rate Calorimeter – ARC).  相似文献   

13.
Damage caused by incidents with transport tanks with compressed liquified gas is amongst the most extreme that can be encountered with transport vessels. This is particularly the case with the Boiling Liquid Expanding Vapor Explosion (BLEVE), which may occur if such a tank is exposed to fire for a prolonged period. Therefore, the local Dutch LPG transport sector adopted a thermally insulating tank coating as a ‘standard outfit’ for their tank trailers, with the aim to delay a BLEVE for a sufficiently long period for emergency services to take appropriate measures and for people near the accident location to be evacuated. On a European scale however, no consensus has been reached on the cost-benefit of such measures.With the current drive towards “greener” and renewable energy sources, this issue has regained attention with alternative fuels such as LNG, CNG and Hydrogen and a need was felt for (better) theoretical models and experimental data concerning the behavior of transport tanks carrying these substances.In this paper a new tank thermal (equilibrium) model is described to predict pressure and temperature behavior of a multi layered, thermally insulated tank containing a compressed liquified gas exposed to heat. Results are compared with data of three bonfire experiments, in which 3 m3 tanks, filled for ca. 50% with LPG were exposed to fire. A good match between modelled and experimental pressure and temperature evolution in time could be obtained using a constant value for the thermal conductivity of the insulation layer. The modelling showed that the thermal insulation value is crucial for an accurate prediction of these parameters as well as the opening time for a pressure safety valve. As relevant temperatures may cover a very wide range (from cryogenic in LNG-tanks to over 1000 °C in a fire) knowledge of the thermal (and physical) behavior of the insulating layer over a large temperature range is essential.The same holds for the behavior of the PRV when subjected to fire. Extreme temperatures may also lead to deviating behavior from what is expected based on the initial settings.  相似文献   

14.
15.
Forecasting the behaviour of a flammable or toxic cloud is a critical challenge in quantitative risk analysis. Recent literature shows that empirical and integral models are unable to model complex dispersion scenarios, like those occurring in semi-confined spaces or with the presence of physical barriers. Although CFD simulators are promising tools in this regard, they still need to be fully validated with comprehensive datasets coming from experimental campaigns designed ad-hoc. In this paper, we present an experimental campaign carried out by a joint venture between University of São Paulo and Universitat Politècnica de Catalunya to investigate CFD tools performance when used to analyse clouds dispersion. The experiments consisted on propane cloud dispersion field tests (unobstructed and with the presence of a fence obstructing the flow) of releases up to 0.5 kg s−1 of 40 s of duration in a discharge area of 700 m2. We provide a full 1-s averaged propane concentration evolution dataset of two experiments, extracted from 29 points located at different positions within the cloud, with which we have tested FLACS® CFD-software performance. FLACS reproduces successfully the presence of complex geometry, showing realistic concentration decreases due to cloud dispersion obstruction by the existence of a fence. However, simulated clouds have not represented the whole complex accumulation dynamics due to wind variation.  相似文献   

16.
This study developed an improved model for the dispersion of released toxic gases, SLABi, based on the widely used model SLAB. Two major improvements enhanced the model's ability to represent observations. First, SLAB was upgraded to account for temporal variation in wind vectors. Thus, real-time changes in meteorological conditions can be considered in dispersion forecasting. Second, a source term module was developed and embedded in SLABi to standardize the procedure of emission calculation. Both the standard SLAB model and the SLABi model were applied to a case study to evaluate the impact of time-varying winds on the dispersion of released gases. The results showed that meteorology has a significant influence on the dispersion of released gases. The SLABi model can provide decision makers with timely and accurate guidance, so as to minimize hazards to people and the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号