首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Bench-scale batch tests were conducted to assess the potential applicability of a combined separation/concentration/destruction treatment train to address soils and sediments impacted by per- and polyfluoroalkyl substances (PFAS) contamination at Schriever Space Force Base with historic aqueous film-forming foam (AFFF). Specifically, a novel treatment train coupling soil washing (for treatment of impacted soil/sediment) with foam fractionation (for treatment of the wash water [WW] generated during soil washing) and electrochemical oxidation (ECO, for treatment of the foam fractionate generated during foam fractionation) was evaluated at the bench scale using site-specific materials. Results presented herein show that the AFFF-impacted sandy soils with low organic content were amenable to treatment via soil washing. However, the removal of hydrophobic PFAS, such as perfluorooctanesulfonic acid (PFOS), from the organic-rich sediments was challenging. Results from batch desorption experiments were within a factor of 2 of those generated by soil washing bench studies, suggesting that simple batch tests can potentially be used to reasonably predict the treatment efficacy of soil washing. Long-chained perfluoroalkyl acids (PFAAs) within the WW were removed more effectively in the foam fractionation studies as compared to short-chain PFAAs. Addition of a surfactant, such as cetrimonium bromide (CTAB), enhanced foaming but only marginally improved the treatment of short-chained PFAAs and in some cases inhibited PFOS removal. ECO reduced PFAS concentrations in the foam fractionate generated during foam fractionation by several orders of magnitude. However, generation of unwanted byproducts may warrant further treatment and/or disposal. Overall, results from this study provide a novel data set highlighting the site-dependent nature of these PFAS remedial technologies and how simple, low-cost bench tests can be reliably leveraged for informed decision-making during PFAS remedial planning.  相似文献   

2.
3.
Using an innovative, two-stage process to remediate uranium-contaminated soils, researchers at Los Alamos National Laboratory's (LANL's) Technical Area 33 (TA-33) successively reduced 218 cubic yards of contaminated soil to approximately 30 gallons of leachate solution and resins. In the first step, the contaminated soil is separated from the clean soil using the Thermo Nuclean (a division of the Thermo NUtech company) Segmented Gate System (SGS). Contaminated soil proceeds via conveyor belt to a separate storage bin to await further processing, while uncontaminated soil is returned to its original location. From the 218 cubic yards of soil excavated from the test site at TA-33, only seven cubic yards were found to contain uranium contamination above the criterion release limit, yielding an initial waste volume reduction of 97 percent. Using the containerized vat leaching (CVL) method, a technique borrowed from the mining industry, the uranium was then removed from the reduced volume of contaminated soil. This article describes the two processes and analyzes potential cost savings based on different disposal and storage options.  相似文献   

4.
The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability of soil washing technology did not effectively evaluate the removal of the elevated contaminant concentrations that were found. To further evaluate the applicability of soil washing at this industrial site, a second more comprehensive pilot-scale treatability test was conducted. Twenty-three test runs were conducted over a two-week period in late September 1992, using a pilot-scale soil washing device called the volume reduction unit (VRU). The experimental design evaluated the effects of two wash temperatures, two pH levels, three surfactants, four surfactant concentrations, and two liquid-to-soil ratios on the contaminant removal efficiency of the soil washing process. Site soils from layers at three different depths were used in the study. Results from the pilot-scale treatability test indicated that the VRU could achieve contaminant reduction efficiencies of 97 percent for heptachlor and greater than 91 percent for dieldrin in the uppermost contaminated soils (surface to 1-ft. depth). Residual concentrations of heptachlor and dieldrin in the treated soil ranged from 50 ppm to less than 1.6 ppm, and 6.8 ppm to less than 1.6 ppm, respectively. However, the analytical method detection limit of 1.6 ppm was not low enough to provide residual concentration data at the risk-based action levels of 0.55 ppm for heptachlor and 0.15 ppm for dieldrin.  相似文献   

5.
Traditional bioremediation approaches have been used to treat petroleum source contamination in readily accessible soils and sludges. Contamination under existing structures is a greater challenge. Options to deal with this problem have usually been in the extreme (i.e., to dismantle the facility and excavate to an acceptable regulated residual, or to pump and treat for an inordinately long period of time). The excavated material must be further remediated and cleanfill must be added to close the excavation. If site assessments were too conservative or incomplete, new contamination adulterating fill soils may result in additional excavation at some later date. Innovative, cost-efficient technologies must be developed to remove preexisting wastes under structures and to reduce future remediation episodes. An innovative soil bioremediation treatment method was developed and evaluated in petroleum hydrocarbon contaminated (PHC) soils at compressor stations of a natural gas pipeline running through Louisiana. The in-situ protocol was developed for remediating significant acreage subjected to contamination by petroleum-based lubricants and other PHC products resulting from a chronic leakage of lubricating oil used to maintain the pipeline itself. Initial total petroleum hydrocarbon (TPH) measurements revealed values of up to 12,000 mg/kg soil dry weight. The aim of the remediation project was to reduce TPH concentration in the contaminated soils to a level of <200 mg/kg soil dry weight, a level negotiated to be acceptable to state and federal regulators. After monitoring the system for 122 days, all sites showed greater than 99-percent reduction in TPH concentration.  相似文献   

6.
Land treatment facilities can provide effective treatment of secondary oily wastewater from maintenance operations, particularly in arid climates. Soil and underlying groundwater from a land treatment facility, which has been operating for eight years, were analyzed to determine the effectiveness of using bioremediation for the treatment of dissolved and free‐phase oil in maintenance wastewater. The study was conducted at a mining site in Western Australia. The facility was capable of treating 140 kiloliters (kL) of oily wastewater per day. The average petroleum hydrocarbon content of the wastewater was 2 percent weight per volume (w/v) based on data available for the first five years. The soil data indicate that the land treatment process has been operating efficiently even at high wastewater loadings with maximum degradation rates of 10–242 mg/kg per day. Based on the soil data, there is no evidence of accumulation of any metal or polycyclic aromatic hydrocarbon (PAH) compounds. The land treatment facility has led to only low levels of TPH (total petroleum hydrocarbons) contamination (<4 ppm) in the underlying groundwater. However, nitrate concentrations in the groundwater were shown to increase over the first five years of the facility's operation. This article reports and discusses the operational data from the land treatment process, illustrating its effectiveness in treating oily wastewater. © 2001 John Wiley & Sons, Inc.  相似文献   

7.
The Office of Radiation and Indoor Air of the U.S. Environmental Protection Agency has demonstrated a soil washing plant for the treatment of radioactively contaminated soils from two Superfund sites in New Jersey. The plant employs unit operations that are widely used in the processing of minerals and coal. These operations were examined and tested to determine how they would apply to volume reduction of these contaminated soils. In this context, they are considered to be innovative candidates for remediation of other sites with large volumes of soil contaminated with low-level radioactivity. Laboratory testing of soil characteristics and behavior in unit processes is used to assess the applicability of volume reduction/chemical extraction (VORCE) technology to specific sites.  相似文献   

8.
Often liability for environmental damage and cleanup of contaminated sites is made difficult, especially with chemically complex environments containing different pollutants, by the inability to differentiate potential sources (or “owners”) of pollutants from each other. As a result, unnecessary costs may be associated with having to assume financial responsibility for alleged contamination of a site. This article reviews the advances in chemical fingerprinting as a tool in identifying and differentiating sources of hydrocarbon pollutants in chemically complex environments. Appropriate hydrocarbon target analytes and required analytical methods for hydrocarbon fingerprinting are discussed, and new interpretative tools are presented that may be applied to contaminated soil, sediment, and groundwater environmental situations. With these analytical and interpretative techniques, an appropriate allocation of chemical contamination and costs at a site can be made.  相似文献   

9.
Soil contaminated with persistent pesticides, such as DDT, poses a serious risk to humans and to wildlife. A surfactant‐aided soil‐washing technique was studied as an alternative method for remediation of DDT‐contaminated soil. An ex situ soil washing method was investigated using nonionic and anionic surfactants due to the clayey structure of the contaminated soil. A mixture of 1 percent nonionic surfactant (Brij 35) and 1 percent anionic surfactant (SDBS) removed more than 50 percent of DDT from soil in a flow‐through system, whereas individual surfactants or other combinations of the surfactants had a lower removal efficiency. The soil‐washing technique was improved using a mixing system. The mixture of surfactants was optimized in the mixing system, and the combination of 2 percent Brij 35 and 0.1 percent SDBS was found to be optimum, removing 70 to 80 percent of DDT. Prewashing of the soil with tap water decreased the adsorption of surfactants to soil particles by 30 to 40 percent, and postwashing recovered 90 percent of the surfactants. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
Bench‐scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites included in the National Priority List. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlorophenol (PCP), dioxins, and heavy metals. The effectiveness of the solvent extraction process was assessed using liquefied propane or dimethyl ether as solvents over a range of operating conditions. These studies have demonstrated that a two‐stage solvent extraction process using dimethyl ether as a solvent at a ratio of 1.61 per kg of soil could decrease dioxin levels in the soil by 93.0 to 98.9 percent, and PCP levels by 95.1 percent. Reduction percentages for benzo(a)pyrene (BaP) potency estimate and total detected PAHs were 82.4 and 98.6 percent, respectively. Metals concentrations were not reduced by the solvent extraction treatment. These removal levels could be significantly improved using a multistage extraction system. Commercial scale solvent extraction using liquefied gases costs about $220 per ton of contaminated soil. However, field application of this technology at the United Creosote site, Conroe, Texas, failed to perform to the level observed at bench scale due to the excessive foaming and air emission problem. Soil washing using surfactant solution and wet screening treatability studies were also performed on the soil samples in order to assess remediation strategies for sites. Although aqueous phase solubility of contaminants seemed to be the most important factor affecting removal of contaminants from soil, surfactant solutions (3 percent by weight) having nonionic surfactants with hydrophile‐lipophile balance (HLB) of about 14 (Makon‐12 and Igepal CA 720) reduced the PAH levels by an average of 71 percent, compared to no measurable change when pure deionized water was used. Large fractioza of clay and silt (<0.06mm), high le!ezielsof orgaizic contami‐ nants and hzimic acid can makesoil washing less applicable.  相似文献   

11.
Although the application of microbe biotechnology has been successful with petroleum-based constituents, microbial digestion has met with limited success for widespread residual organic and metal pollutants located above the potentiometric surface. Vegetation-based remediation, on the other hand, shows potential for accumulating, immobilizing, and transforming low levels of persistent contamination from the subsurface. Agricultural bioremediation, called geobotany or phytoremediation, relies on the remediating abilities of contaminant-accumulating plants to remove contamination from soil or groundwater. In natural ecosystems, plants act to filter and metabolize substances generated by nature. Phytoremediation affirmatively applies this process to help clean up contamination created by artificial means. Plants have proven effective at remediating areas contaminated with organic chemical wastes such as petroleum products, solvents, wood preservatives, pesticides, and metals. Phytoremediation is not the best technology for every site but has shown success with lead, cadmium, zinc, and radionuclides. The phytoremediation process takes much longer than conventional methods to clean a site and is dependent upon the type and degree of contamination. Concentrations must be within a narrow range of tolerable levels and the presence of the contamination must be at the appropriate depth. Nevertheless, phytoremediation offers an effective alternative to conventional, engineered remedial plans that usually involve costly activities like excavation, treatment, and disposal of soil or pump-and-treat technologies for groundwater. Phytoremediation also seems to be a promising new technology for the treatment of stormwater, industrial wastewater, and sewage. The relative low costs of capital for start-up together with negligible operations and maintenance costs provide a strong incentive for further investigation and development of phytoremediation projects.  相似文献   

12.
In June 1992, SoilTech ATP Systems, Inc., completed the soil treatment phase of the Waukegan Harbor Superfund Project in Waukegan, Illinois, after approximately five months of operation. SoilTech successfully treated 12,700 tons of sediment contaminated with polychlorinated hiphenyls (PCBs) using a transportable SoilTech anaerobic thermal processor (ATP) system nominally rated at ten tons per hour throughput capacity. The SoilTech ATP technology anaerobically desorbs contaminants such as PCBs from solids and sludges at temperatures over 1,000° F. Principal products of the process are clean, treated solids and an oil condensate containing the hydrocarbon contaminants. At the Waukegan Harbor Superfund site, PCB concentrations in the sediments excavated and dredged from a ditch, lagoon, and harbor slip averaged 10,400 parts per million (ppm) (1.04 percent) and were as high as 23,000 ppm (2.3 percent). Treated soil was backfilled in an on-site containment cell. The removal efficiency of PCBs from the soil averaged 99.98 percent, relative to the project performance specification of 97 percent, and treated soil PCB concentrations were measured below 2 ppm. Approximately 30,000 gallons of PCB oil, desorbed from the feed material, were returned to the owner for subsequent off-site disposal. After modifications to the emissions control equipment, compliance with the 99.9999 percent destruction and removal efficiency (DRE) for PCBs in stack emissions required by the U.S. Environmental Protection Agency was achieved.  相似文献   

13.
In tropical regions, landfill leachate contamination at municipal solid waste disposal sites is a critical issue because of the large volume of highly contaminated leachate formed during the rainy season. We evaluated the efficacy of constructed wetlands (CWs) with the ability to reduce the water volume and pollutant levels to reduce leachate contamination compared to the most commonly used treatment system, stabilization ponds, based on parameters obtained in a field experiment in Thailand. The simulation indicated that CWs had a higher potential to reduce the water volume than stabilization ponds over the course of a year. Scenario evaluations under varying initial water depths, system depths, and area sizes indicated that the CWs could reduce the treatment area to prevent overflow and leachate pollution. In addition, the CWs were estimated to reduce the leachate amount and pollution by 83–100% and 92–99%, respectively. When there is limited land available, deeper CWs can be used to sustainably prevent contamination from leachate overflow. Effectively designed CW systems may be valuable for both reducing the required area and the contamination; therefore, CWs are a promising option for sustainable landfill leachate treatment systems in developing tropical regions.  相似文献   

14.
A major challenge for in situ treatment is rebound. Rebound is the return of contaminant concentrations to near original levels following treatment, and frequently occurs because much of the residual nonaqueous phase liquid (NAPL) trapped within the soil capillaries or rock fractures remains unreachable by conventional in situ treatment. Fine‐textured strata have an especially strong capacity to absorb and retain contaminants. Through matrix diffusion, the contaminants dissolve back into groundwater and return with concentrations that can approach pretreatment levels. The residual NAPL then serves as a continuing source of contamination that may persist for decades or longer. A 0.73‐acre (0.3‐hectare) site in New York City housed a manufacturer of roofing materials for approximately 60 years. Coal tar served as waterproofing material in the manufacturing process and releases left behind residual NAPL in soils. An estimated 47,000 pounds (21,360 kg) of residual coal tar NAPL contaminated soils and groundwater. The soils contained strata composed of sands, silty sands, and silty clay. A single treatment using the RemMetrik® process and Pressure Pulse Technology® (PPT) targeted the contaminant mass and delivered alkaline‐activated sodium persulfate to the NAPL at the pore‐scale level via in situ treatment. Posttreatment soil sampling demonstrated contaminant mass reductions over 90 percent. Reductions in posttreatment median groundwater concentrations ranged from 49 percent for toluene to 92 percent for xylenes. Benzene decreased by 87 percent, ethylbenzene by 90 percent, naphthalene by 80 percent, and total BTEX by 91 percent. Mass flux analysis three years following treatment shows sustained reductions in BTEX and naphthalene, and no rebound. ©2015 Wiley Periodicals, Inc.  相似文献   

15.
Many hospitals or health care facilities have faced financial difficulties and thus they have attempted to find cost-effective treatment and disposal methods of their regulated medical wastes (RMWs). This study investigated generation volume and sources, composition, and treatment and disposal methods for RMWs obtained from three out of the five typical city hospitals in Massachusetts for which we could obtain relevant data on medical waste. Also, this study compared the generation patterns and amounts of RMWs between the hospital and the medical school. The yearly operational treatment and disposal costs of RMWs based on different treatment and disposal methods were analyzed for one hospital. The most cost-effective option of four different treatment and disposal options studied was to combine on-site incineration and microwave technologies. Finally, this study identified measures for the effective waste characterization methods for the reduction of treatment and disposal costs of RMWs. By careful exclusion of non-RMW from RMW waste streams, hospitals can reduce the RMW volume that requires special treatment and reduce disposal costs.  相似文献   

16.
As a means to remediate soil contaminated by polycyclic aromatic hydrocarbons, we investigated a combined process involving ethanol washing followed by a Fenton oxidation reaction. Artificial loamy soil was contaminated with various representative polycyclic aromatic hydrocarbons (i.e., fluorene, anthracene, pyrene, benzo(b)fluoranthene, or benzo(a)pyrene) at concentrations ten times higher than regulatory soil standards of The Netherlands or Canada, and then washed four times in ethanol, which reduced the concentration of polycyclic aromatic hydrocarbon contamination to below the regulatory standard. Fenton oxidation of ethanol solutions containing anthracene, benzo(a)pyrene, pyrene, acenaphthylene, acenaphthene, benz(a)anthracene, benzo(j)fluoranthene, or indeno(1,2,3-cd)pyrene showed a removal efficiency of 73.3%–99.0%; by contrast, solutions containing naphthalene, fluorene, fluoranthene, phenanthrene, or benzo(b)fluoranthene showed a removal efficiency of 9.6%–27.6%. Since each of the nonremediated polycyclic aromatic hydrocarbons, excluding benzo(b)fluoranthene, are easily biodegradable, these results indicate that the proposed treatment can be successfully applied to polycyclic aromatic hydrocarbon-contaminated soil that does not contain high concentrations of benzo(b)fluoranthene. The main reaction products resulting from Fenton oxidation of ethanol solutions containing anthracene or benz(a)anthracene were anthraquinon or benz(a)anthracene-7,12-dione, respectively; while 1,8-naphthalic anhydride was produced by solutions of acenaphthylene and acenaphthene, and 9-fluorenone by a fluorene solution. Received: June 9, 1998 / Accepted: March 24, 1999  相似文献   

17.
This article demonstrates the applicability of in situ flushing for the remediation of soil contaminated with petroleum hydrocarbons at a Mexican refinery. The initial average total petroleum hydrocarbon (TPH) concentration for the demonstration field test was 55,156 g/kg. After six weeks of in situ flushing with alternate periods of water and water/surfactant, an average concentration of 1,407 mg/kg was reached, achieving a total removal efficiency of 98 percent. At the end of the process, no hydrocarbons such as diesel; gasoline; benzene, toluene, ethyl benzene, and xylene (BTEX); or petroleum aromatic hydrocarbons (PAHs) were found. Iron washing achieved a removal efficiency of 70 percent, and for vanadium, the removal efficiency was 94.4 percent. The volume of soil treated was 41.6 m3 (38 m2), equivalent to 69.5 tons of soil. A rough calculation of the process costs estimated a total cost of $104.20/m3 ($114.00/m2). Our research indicates that there are a few studies demonstrating in situ flushing experiences under field conditions where both organic (TPH, diesel, gasoline, PAHs, BTEX) and metal (iron and vanadium) removals are reported. © 2004 Wiley Periodicals, Inc.  相似文献   

18.
In situ chemical oxidation (ISCO) with permanganate has been widely used for soil and groundwater treatment in the saturated zone. Due to the challenges associated with achieving effective distribution and retention in the unsaturated zone, there is a great interest in developing alternative injection technologies that increase the success of vadose‐zone treatment. The subject site is an active dry cleaner located in Topeka, Kansas. A relatively small area of residual contamination adjacent to the active facility building has been identified as the source of a large sitewide groundwater contamination plume with off‐site receptors. The Kansas Department of Health and Environment (KDHE) currently manages site remedial efforts and chose to pilot‐test ISCO with permanganate for the reduction of perchloroethene (PCE) soil concentrations within the source area. KDHE subsequently contracted Burns & McDonnell to design and implement an ISCO pilot test. A treatability study was performed by Carus Corporation to determine permanganate‐soil‐oxidant‐demand (PSOD) and the required oxidant dosing for the site. The pilot‐test design included an ISCO injection approach that consisted of injecting aqueous sodium permanganate using direct‐push technology with a sealed borehole. During the pilot test, approximately 12,500 pounds of sodium permanganate were injected at a concentration of approximately 3 percent (by weight) using the methods described above. Confirmation soil sampling conducted after the injection event indicated PCE reductions ranging from approximately 79 to more than 99 percent. A follow‐up treatment, consisting of the injection of an additional 6,200 pounds of sodium permanganate, was implemented to address residual soil impacts remaining in the soil source zone. Confirmation soil sampling conducted after the treatment indicated a PCE reduction of greater than 90 percent at the most heavily impacted sample location and additional reductions in four of the six samples collected. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Petroleum oil is a major driver of worldwide economic activity, but it has also created contamination problems during the storage and refining process. Also, unconventional resources are natural resources, which require greater than industry‐standard levels of technology or investment to exploit. In the case of unconventional hydrocarbon resources, additional technology, energy, and capital have to be applied to extract the gas or oil. Bioremediation of petroleum spill is considered of great importance due to the contaminating effects on human health and the environment. For this reason, it is important to reduce total petroleum hydrocarbons (TPH) in contaminated soil. In addition, biosurfactant production is a desirable property of hydrocarbon‐degrading microorganisms. Seven strains belonging to Lysinibacillus sphaericus and Geobacillus sp were selected to evaluate their ability to biodegrade TPH in the presence of toxic metals, their potential to produce biosurfactants, and their ability to improve the biodegradation rate. The seven bacterial strains examined in this study were able to utilize crude petroleum‐oil hydrocarbons as the sole source of carbon and energy. In addition, their ability to degrade crude oil was not affected by the presence of toxic metals such as chromium and arsenic. At the same time, the strains were able to reduce toxic metals concentration through biosorption processes. Biosurfactant production was determined using the drop‐collapsed method for all strains, and they were characterized as both anionic and cationic biosurfactants. Biosurfactants showed an increase in biodegradation efficiency both in liquid minimal salt medium and landfarming treatments. The final results in field tests showed an efficiency of 93 percent reduction in crude oil concentration by the selected consortium compared to soil without consortium. The authors propose L. sphaericus and Geobacillus sp consortium as an optimum treatment for contaminated soils. In addition, production of biosurfactants could have an application in the extraction of crude oil from unconventional hydrocarbon resources. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The Palmerton Zinc Site is a Superfund site in Palmerton, Pennsylvania. Its former mineral processing operations have contaminated nearby wells and soils with zinc and cadmium. Preliminary analysis of soil and dust sampling conducted in May 1991 has revealed that the dust poses a potential threat to human health. Based on the results of a previous study, which showed a high percentage of silt and clay in soils from Palmerton residential properties, it was concluded that soil washing is not likely to be a viable method to treat the soil and dust contamination in Palmerton. However, since the completion of this study, a soil-washing process for “unwashable” clays and silts has been developed. A residential soil sample from Palmerton, which had low concentrations of arsenic, cadmium, and lead, and a somewhat high concentration of zinc, was washed in a bench-scale version of this process. The results showed that the new soil-washing process for “unwashable” clays and silts may be a viable method to treat the soil and dust contamination in Palmerton, depending on the soil quality criteria concentrations selected for site cleanup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号