首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Release of salts from municipal solid waste combustion residues   总被引:2,自引:0,他引:2  
Residues from fluidized bed combustion of municipal solid waste were investigated with respect to their leaching behavior and possible extraction of salts. The total water extractable amounts of Na, K, Ca, Cl(-), Br(-), F(-) and SO(4)(2-) along with the total dissolved solids of bottom, hopper, cyclone and bag house filter ashes were determined. A simple multistage washing process (using water as the extraction medium) was tested in lab scale experiments. The effect of variations in parameters, such as water to ash weight ratio, contact time, temperature and number of extraction steps was investigated. The leaching behavior of untreated and washed cyclone and bag house filter ashes was evaluated by a two-step batch-leaching test, i.e. the CEN test. The ashes investigated in this study can be arranged according to their decreasing water extractable contents and total dissolved solids as follows: filter ash > cyclone ash > hopper ash > bottom ash. A triple extraction with water at liquid to solid ratio 2 and extraction time 5 min gave the best results for the extraction of Ca, Na, K, Cl(-) and SO(4)(2-) from the cyclone as well as from the filter ashes. The leached amounts of salts in the CEN test performed on the washed cyclone ash were considerably lower than the corresponding amounts released from the unwashed ash. Thus, the washed cyclone ash was made more stable with respect to salt leachability. On the other hand, large amounts of salts were leached from the washed filter ashes as well as from unwashed filter ashes. Therefore, it can be concluded that three stage water extraction is not a suitable stabilization method for this type of filter ashes.  相似文献   

2.
Municipal Solid Waste Incineration (MSWI) produces different sorts of residues, bottom ash, fly ashes and Air Pollution Control (APC) residues. Generally, fly ashes and APC residues are mixed at the MSWI plant and manage as a sole residue. In this study, fly ashes and APC residues have been sampled separately at different Belgian MSWI plant and analysed by X-ray fluorescence in order to highlight the composition differences that may appear between the solids. Ca and Cl are found to be the major elements in most of the samples. Lithophilic elements, such as Al and Si, are richer in furnace and boiler ashes, as can be expected. Leaching tests also show differences between the residues; leachates from furnace and boiler ashes are alkaline while those from bag filter residues present a pH value of 6, which impacts the leaching of heavy metals (Pb and Zn). The results suggest that it could be advantageous to manage fly ashes and APC residues separately by adjusting the treatment to their specificities.  相似文献   

3.
The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.  相似文献   

4.
Thermal treatment is a promising technology for the fast disposal of hazardous municipal solid waste incineration (MSWI) fly ash in China. However, fly ash produced in grate incinerator (GFA) is rich in CaO and chlorides, which promote the formation of toxic hexavalent chromium [Cr(VI)] and ash agglomeration during the thermal process, inhibiting the thermal disposal of GFA. In this study, sintering characteristics of CaO-rich GFA were improved by adding Si/Al-rich MSWI ash residues. According to the results, ash agglomeration was well suppressed during thermal treatment of the mixed ash. Si/Al/Fe-compounds competed with un-oxidized Cr-compounds to react with CaO and suppressed Cr(VI) formation. Meanwhile, chlorides in GFA facilitated heavy metal volatilization from added ashes to the secondary fly ash, favoring the recovery of these metals. Ca-aluminosilicates was found as the main mineral phase in the thermally treated mixed ash, which has attractive potential for applications. The formation of the aluminosilicates made the heavy metals that remained in the treated mixed ash more stable than the thermally treated single ash.  相似文献   

5.
Circulating fluidized bed combustion (CFBC) ashes from nine operational periods at the 183 MWe CFBC boiler at Point Aconi were examined for exothermic behaviour. Bed ashes and fly ashes were investigated using a Parr 1455 solution calorimeter. Limited tests were also carried out with additional samples from Point Aconi and from the 160 MWe TVA Bubbling Fluidized Bed Combustion boiler to evaluate the effects of particle size and aging on exothermic behaviour. For the Point Aconi ashes, heat release from the bed ash ranged from 11 to 52 J/g, and the maximum heat release rates ranged from 0.06 to 0.17 J/g/s. For the fly ash heat release varied from 114 to 187 J/g and the maximum heat release rates ranged from 0.8 to 1.9 J/g/s. In the fly ash samples, 50% or more of available CaO was converted to Ca(OH)2, while for the bed ash a third or less of the CaO was converted to Ca(OH)2. The exothermicity of the bed ash is directly proportional to the CaO content of the ash. However, this is not true for the fly ash. The exothermic behaviour of fresh FBC ash appeared to be greatly reduced by exposure in air over a 48-h period. Another conclusion of this work is that particle size effects the exothermic behaviour.  相似文献   

6.
Two bottom ashes, one air pollution control (APC) residue and one fly ash from three different Swedish municipal solid waste incineration (MSWI) plants were characterised regarding the leaching of environmentally relevant components. Characterisation was performed using a diffusion tank leaching test. The impact of carbonation on the release of eight critical components, i.e., Cl(-), Cr, Cu, Mo, Pb, Sb, Se, SO(4)(2-) and Zn, was assessed at a lab-scale and showed carbonation to have a more pronounced demobilising effect on critical components in bottom ashes than in APC residue and fly ash. From grate type incinerator bottom ash, the release of Cr decreased by 97%, by 63% for Cu and by 45% for Sb. In the investigated APC residue, the releases of Cr, Se and Pb were defined as critical, although they either remained unaffected or increased after carbonation. Cl(-) and SO(4)(2-) remained mobile after carbonation in all investigated residues.  相似文献   

7.
Fly ash produced by coal combustion using two types of desulphurization process were studied: a conventional pulverized coal boiler equipped with lime injection (PCL ash), and a circulating fluidized bed combustion boiler with limestone injection (CFBC ash). The ashes were characterized completely: granulometry, morphology, mineralogy, chemical composition and behaviour to water contact. Both PCL ash and CFBC ash present similar features: fine granulometry, presence of anhydrite phase and sulphate content. However, PCL ash also shows lots of spherical particles, unlike CFBC ash, and a much higher lime content, due to the lower desulphurization rate in PC boilers. Unlike CFBC ash, most of the trace elements in PCL ash show an inverse concentration–particle size dependence. Leachates obtained from both samples are rich in soluble salts [CaSO4and Ca(OH)2] and arsenic and selenium are prevented from solubilizing by high lime content. In wetted PCL ash, the formation of ettringite crystals stabilizes calcium and sulphate ions. Simultaneously, arsenate, selenate and chromate anions are trapped in the crystal. CFBC ash does not really harden because the lime content is too low. However, the leached selenium concentration is cut down in wetted CFBC ash samples.  相似文献   

8.
Incineration of municipal solid wastes (MSWs) produces by-products which can be broadly classified as bottom and fly ashes. Since MSW incineration started, possibilities other than landfilling the incineration residues have been sought; most initiatives in this sense tend to use these residues as aggregate substitute in pavements and other road construction elements. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. The study includes not only the specific aspects regarding its role as pavement element, but also the assessment of the environmental effects. Therefore, together with the determination of physical (moisture content, apparent and bulk densities, crystallinity, etc.) and engineering properties (particle size distribution, abrasion and impact resistance, etc.), full chemical characterization of the bottom ash and the study of leaching as a function of aging time have been undertaken. The results obtained indicate that the metal content of both the raw bottom ash and its leachates fulfill the environmental regulations provided that the bottom ash is stored for at least one month. Engineering properties of the bottom ash are close to those of natural aggregates and, thus, road-construction use of these residues seems to be feasible.  相似文献   

9.
A five-stage sequential extraction procedure was used to determine the distribution of 11 metals (Cd, Cr, Cu, Mo, Pb, Zn, As, Co, V, Ni, Ba), and sulphur (S) in bottom ash and in fly ash from a fluidized bed co-combustion (i.e. wood and peat) boiler of Stora Enso Oyj Oulu Mill at Oulu, Northern Finland, into the following fractions: (1) water-soluble fraction (H2O); (2) exchangeable fraction (CH3COOH); (3) easily reduced fraction (NH2OH-HCl); (4) oxidizable fraction (H2O2 + CH3COONH4); and (5) residual fraction (HF + HNO3 + HCl). Although metals were extractable in all fractions, the highest concentrations of most of the metals occurred in the residual fraction. From the environmental point of view, this fraction is the non-mobile fraction and is potentially the least harmful. The Ca concentrations of 29.3 g kg(-1) (dry weight) in bottom ash and of 68.5 g kg(-1) (dry weight) in fly ash were correspondingly approximately 18 and 43 times higher than the average value of 1.6 g kg(-1) (dry weight) in arable land in Central Finland. The ashes were strongly alkaline pH (approximately 12) and had a liming effects of 9.3% (bottom ash) and 13% (fly ash) expressed as Ca equivalents (dry weight). The elevated Ca concentrations indicate that the ashes are potential agents for soil remediation and for improving soil fertility. The pH and liming effect values indicate that the ashes also have a pH buffering capacity. From the environmental point of view, it is notable that the heavy metal concentrations in both types of ash were lower than the Finnish criteria for ash utilization.  相似文献   

10.
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature.Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.  相似文献   

11.
Medical waste from hospitals and other healthcare institutions has become an imperative environmental and public safety problem. Medical waste in Greece has become one of the most urgent environmental problems, because there are 14,000 tons produced annually, of which only a small proportion is incinerated. In the prefecture of Attica there is only one modern municipal medical waste incinerator (started 2004) burning selected infectious hospital waste (5-6 tons day(-1)). Fly and bottom residues (ashes) are collected and stored temporarily in barrels. High values of metal leachability prohibit the landfilling of these ashes, as imposed by EU directives. In the present study we determined quantitatively the heavy metals and other elements in the fly and bottom ashes of the medical waste incinerator, by inductively coupled plasma emission spectrometry (ICP) and by energy dispersive X-ray analysis (EDAX). Heavy metals, which are very toxic, such as Pb, Cd, Ni, Cr, Cu and Zn were found in high concentrations in both fly and bottom ashes. Metal leachability of fly and bottom ashes by water and kerosene was measured by ICP and the results showed that toxic metals in both ashes, such as Pb, Cr, Cd, Cu and Zn, have high leaching values. These values indicate that metals can become soluble and mobile if ash is deposited in landfills, thus restricting their burial according to EU regulations. Analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in fly and bottom ashes showed that their concentrations were very low. This is the first known study in Greece and the results showed that incineration of medical waste can be very effective in minimizing the most hazardous and infectious health-care waste. The presence of toxic metals with high leachability values remains an important draw back of incineration of medical waste and various methods of treating these residues to diminish leaching are been considered at present to overcome this serious technical problem.  相似文献   

12.
Three years of leachate emissions from municipal solid waste incineration bottom ash and crushed rock in a full-scale test road were evaluated. The impact of time, construction design, and climate on the emissions was studied, and the predicted release from standard leaching tests was compared with the measured release from the road. The main pollutants and their respective concentrations in leachate from the roadside slope were Al (12.8-85.3 mg l(-1)), Cr (2-125 microg l(-1)), and Cu (0.15-1.9 mg l(-1)) in ash leachate and Zn (1-780 microg l(-1)) in crushed rock leachate. From the ash, the initial Cl(-) release was high ( approximately 20 g l(-1)). After three years, the amount of Cu and Cl(-) was in the same range in both leachates, while that of Al and Cr still was more than one order of magnitude higher in ash leachate. Generally, the release was faster from material in the uncovered slopes than below the pavement. Whether the road was asphalted or not, however, had minor impacts on the leachate quality. During rain events, diluted leachates with respect to, e.g., salts were observed. The leaching tests failed to simulate field leaching from the crushed rock, whereas better agreement was observed for the ash. Comparisons of constituent release from bottom ash and conventional materials solely based on such tests should be avoided.  相似文献   

13.
Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.  相似文献   

14.
Advanced ash management technologies for CFBC ash   总被引:3,自引:0,他引:3  
The combustion of high-sulphur coal demands the reduction of sulphur emissions. The sorbent most often used in sulphur capture technology is calcium-based. Ashes from technologies such as circulating fluidized bed combustion (CFBC), therefore, contain high calcium levels. The use and disposal of these ashes poses challenges, because of highly exothermic reactions with water, high-pH leachates, and excessive expansion of solidified materials. This paper looks at the potential of two post-combustion ash treatment processes, CERCHAR hydration and AWDS disposal, in solving these challenges. A high-sulphur coal-derived CFBC ash is examined, after CERCHAR hydration treatment, in conjunction with a conventionally hydrated ash, in a range of chemical, geotechnical and utilization scenarios. The ashes are used to make no-cement and roller-compacted concrete as well as Ash Water Dense Suspensions (AWDS). The solidified mortar paste from no-cement concrete is subjected to an extensive geochemical examination to determine how solidification progresses and strength develops, from a chemical point of view.  相似文献   

15.
This study aimed to identify distribution of metals and the influential factors on metal concentrations in incineration residues. Bottom ash and fly ash were sampled from 19 stoker and seven fluidized bed incinerators, which were selected to have a variety of furnace capacity, furnace temperature, and input waste. In the results, shredded bulky waste in input waste increased the concentration of some metals, such as Cd and Pb, and the effect was confirmed by analysis of shredded bulky waste. During MSW incineration, lithophilic metals such as Fe, Cu, Cr, and Al remained mainly in the bottom ash while Cd volatilized from the furnace and condensed to the fly ash. About two thirds of Pb and Zn was found in the bottom ash despite their high volatility. Finally, based on the results obtained in this study, the amount of metal in incineration residues of MSW was calculated and the loss of metal was estimated in terms of mass and money. A considerable amount of metal was found to be lost as waste material by landfilling of incineration residues.  相似文献   

16.
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion.  相似文献   

17.
This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.  相似文献   

18.
The aim of this work was to evaluate the use of solid residues derived from municipal solid waste-derived solid recovered fuel incinerated in a circulating fluidized-bed boiler for concrete production. The concrete mixtures casted by partially replacing the natural aggregates with bottom ash (27 %) and exhausted sand (13 %), according to the European standards for concrete, may be classified in the C16/20 class. The leaching tests performed on monolithic concrete samples showed that the concentrations measured in the leachates were lower than limit values for waste recovery, with the only exception of nickel for the mixture made with the exhausted sand.  相似文献   

19.
Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Footwear is the sector that consumes the major part of leather (60%). Logically, this industry is producing the largest quantity of leather wastes. The objective of this work was to demonstrate the technical feasibility of fluidized bed technology to recover the energy from burning footwear leather wastes. Considering the characteristics of leather waste, especially the heating value (12.5-21 MJ/kg), it can be considered a fairly good fuel. Moreover, leather waste has suitable characteristics for combustion, e.g., high volatile matter (76.5%) and low ash content (5.2%). Two factors deserve special attention: N3O and NOx emissions as a consequence of its unusual high nitrogen content (14.1%) and the chromium speciation because chromium is the main element of ash (3.2%) due to its use in leather tanning. A series of experiments has been carried out in a 0.1 MWt bubbling fluidized bed pilot plant. The combustion efficiency, flue gas composition and chromium speciation were investigated. Despite having high nitrogen content, a low conversion rate of fuel-N to NOx and N2O was attained. Chromium was concentrated in the solid streams and it was consistently found as Cr(III+); no presence of Cr(VI+) was detected.  相似文献   

20.
To recycle municipal solid waste incinerator (MSWI) bottom ash, synthesis of hydrothermal minerals from bottom ash was performed to stabilize heavy metals. MSWI bottom ash was mixed with SiO(2), Al(OH)(3), and Mg(OH)(2) so its chemical composition was similar to that of hydrothermal clay minerals. These solid specimens were mixed with water at a liquid/solid ratio of 5. The reaction temperature was 200 degrees C, and reactions were performed for 24-240h. Generation of kaolinite/smectite mixed-layer clay mineral was found in the samples after the reaction of the mixture of bottom ash, SiO(2), and Mg(OH)(2). Calcium silicate hydrate minerals such as tobermorite and xonotlite were also generated. X-ray powder diffraction suggested the presence of amorphous materials. Leaching tests at various pHs revealed that the concentration of heavy metals in the leachates from MSWI bottom ash hydrothermally treated with SiO(2) and Mg(OH)(2) was lower than that in leachates from non-treated bottom ash, especially under acid conditions. Hydrothermal treatment with modification of chemical composition may have potential for the recycling of MSWI bottom ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号