首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible.  相似文献   

4.
5.
Tian S  Lu L  Zhang J  Wang K  Brown P  He Z  Liang J  Yang X 《Chemosphere》2011,84(1):63-69
Sedum alfredii is a well-known Cd (cadmium) hyperaccumulator native to China. The impacts of exogenous Ca on Cd-induced oxidative stress and antioxidant systems in roots of S. alfredii were investigated by using cellular and biochemical approaches. Supplementation of the medium with higher Ca levels resulted in alleviated growth inhibition and decreased Cd concentration, as well as increased Ca concentration in roots. Cadmium induced lipid peroxidation and loss of plasma membrane integrity, reactive oxygen species overproduction, as well as ultrastructural changes of root cells were largely reversed by Ca supplementation in the medium. Calcium application significantly altered the Cd effects on antioxidant enzymes and non-enzyme antioxidants (non-protein thiols), and significantly increased glutathione (GSH) biosynthesis. The results suggest that Ca is able to protect the roots of S. alfredii against Cd toxicity by restoration of Cd-displaced Ca, alleviation of the metal induced oxidative stress, as well as promotion of GSH biosynthesis.  相似文献   

6.
7.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   

8.
9.
10.
11.
Lei W  Wang L  Liu D  Xu T  Luo J 《Chemosphere》2011,84(5):689-694
Cadmium (Cd) is a highly toxic element in water. Its toxicity has been attributed to oxidative stress mediated by free radicals. Here we investigated the effects of Cd on the histopathology, antioxidant enzymes and lipid peroxidation of crustacean heart. The freshwater crabs Sinopotamon yangtsekiense were exposed to different concentrations of Cd for 1, 3, 5 and 7 d. After exposure, histological abnormalities were discovered, including myocardial edema, vacuolar and vitreous degeneration, and infiltration of inflammatory cells. Additionally, alterations in nuclei, mitochondria, rough endoplasmic reticulum as well as myofibrils were observed. Meanwhile, superoxide dismutase (SOD) activity was significantly increased after Cd exposure. Catalase (CAT) activity was only increased in the group exposed to 14.50 mg L−1 Cd on day 5 and decreased with increasing Cd concentration and exposure time. Glutathione peroxidase (GPx) activity was increased in groups treated with 29.00, 58.00 and 116.00 mg L−1 on days 1 and 3, and decreased thereafter. Besides, malondialdehyde (MDA) levels were significantly increased after 3 d of Cd exposure at all the indicated concentrations. These results showed that acute Cd exposure led to harmful effects on the histology of crab heart, which are most likely linked to Cd-induced oxidative stress.  相似文献   

12.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

13.
Due to its prolific growth, oilseed rape (Brassica napus L.) can be grown successfully for phytoremediation of cadmium (Cd)-contaminated soils. Nowadays, use of plant growth regulators against heavy metals stress is one of the major objectives of researchers. The present study evaluates the ameliorate effects of 5-aminolevulinic acid (ALA, 0, 0.4, 2, and 10 mg/l) on the growth of oilseed rape (B. napus L. cv. ZS 758) seedlings under Cd stress (0, 100, and 500 μM). Results have shown that Cd stress hampered the seedling growth by decreasing the radical and hypocotyls length, shoot and root biomass, chlorophyll content, and antioxidants enzymes. On the other hand, Cd stress increased the level of malondialdehyde (MDA) and production of H2O2 and accumulation of Cd in the shoots. The microscopic study of leaf mesophyll cells showed that toxicity of Cd totally destroyed the whole cell structure, and accumulation of Cd also appeared in micrographs. Application of ALA at lower dosage (2 mg/l) enhanced the seedling growth and biomass. The results showed that 2 mg/l ALA significantly improved chlorophyll content under Cd stress and decreased the level of Cd contents in shoots. Application of ALA reduced the MDA and H2O2 levels in the cotyledons. The antioxidants enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, and superoxide dismutase) enhanced their activities significantly with the application of 2 mg/l ALA under Cd stress. This study also indicated that higher dosage of ALA (10 mg/l) imposed the negative effect on the growth of oilseed rape. Microscopic study showed that application of ALA alleviated the toxic effects of Cd in the mesophyll cell and improved the cell structure. Use of 2 mg/l ALA under 500 μM Cd was found to be more effective, and under this dosage, cell structure was clear, with obvious cell wall and cell membrane as well as a big nucleus, which was found with well-developed two or more nucleoli. Chloroplast was almost round in shape and contained thylakoids membranes and grana, but starch grains were not found in chloroplast comparatively to other treatments. On the basis of our results, we can conclude that ALA has a promotive effect which could improve plant survival under Cd stress.  相似文献   

14.
The aquatic plant Pistia stratiotes L. (water lettuce) was studied due to its capability of absorption of contaminants in water and its subsequent use in wetlands constructed for wastewater treatment. The effects of Cd on root growth, accumulation of Cd, antioxidant enzymes, and malondialdehyde (MDA) content in P. stratiotes were investigated. The results indicated that P. stratiotes has considerable ability to accumulate Cd. Cadmium induced higher superoxide dismutase (SOD) and peroxidase (POD) activities than catalase activity, suggesting that SOD and POD provided a better defense mechanism against Cd-induced oxidative damage. The accumulation of Cd promoted MDA production.  相似文献   

15.
16.
Luo SL  Chen L  Chen JL  Xiao X  Xu TY  Wan Y  Rao C  Liu CB  Liu YT  Lai C  Zeng GM 《Chemosphere》2011,85(7):1130-1138
This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency.  相似文献   

17.
Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7 d to 0.01 mL L−1 and 0.1 mL L−1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2′-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota.  相似文献   

18.
Jeong S  Moon HS  Nam K  Kim JY  Kim TS 《Chemosphere》2012,88(2):204-210
In this study, phosphate-solubilizing bacteria (PSB), Bacillus megaterium, were used to enhance Cd bioavailability and phytoextractability of Cd from contaminated soils. This strain showed a potential for directly solubilizing phosphorous from soils more than 10 folds greater than the control without inoculation. The results of pot experiments revealed that inoculation with B. megaterium significantly increased the extent of Cd accumulation in Brassica juncea and Abutilon theophrasti by two folds relative to the uninoculated control. The maximum Cd concentrations due to inoculation were 1.6 and 1.8 mg Cd g−1 plant for B. juncea and A. theophrasti after 10 wk, respectively. The total biomass of A. theophrasti was not significantly promoted by the inoculation treatment, yet the total biomass of B. juncea increased from 0.087 to 0.448 g. It is also worth to mention that B. juncea predominantly accumulates Cd in its stems (39%) whereas A. theophrasti accumulates it in its leaves (68%) after 10 wk. The change of the Cd speciation indicated that inoculation of B. megaterium as PSB increased the bioavailabilty of Cd and consequently enhanced its uptake by plants. The present study may provide a new insight for improving phytoremediation using PSB in the Cd-contaminated soils.  相似文献   

19.
Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.  相似文献   

20.
Cadmium tolerance in six poplar species   总被引:5,自引:1,他引:4  
Selection of poplar species with greater Cd tolerance and exploiting the physiological mechanisms involved in Cd tolerance are crucial for application of these species to phyto-remediation. The aim of this study is to investigate variation in Cd tolerance among the six poplar species and its underlying physiological mechanisms. Cuttings of six Populus species were cultivated for 10 weeks before exposure to either 0 or 200 μM CdSO4 for 20 days. Gas exchange in mature leaves was determined by a portable photosynthesis system. Cd concentrations in tissues were analyzed by a flame atomic absorbance spectrometry. Subsequently, Cd amount per plant, bio-concentration factor (BCF) and translocation factor (T f) were calculated. Nonenzymatic compounds and activities of antioxidative enzymes in tissues were analyzed spectrophotometrically. Cd exposure caused decline in photosynthesis in four poplar species including Populus cathayana (zhonghua 1). Among the six species, P. cathayana (zhonghua 1) displayed the highest Cd concentrations in tissues, the largest Cd amount in aerial parts, the highest BCF in aerial parts and T f under Cd exposure. Under Cd stress, increases in total soluble sugars in roots but decreases in starch in roots, wood, and leaves of P. cathayana (zhonghua 1) were found. Induced O 2 ?? and H2O2 production in roots and leaves, and increases in free proline, soluble phenolics, and activities of antioxidative enzymes were observed in P. cathayana (zhonghua 1). Based on results of this pot experiment, it is concluded that P. cathayana (zhonghua 1) is superior to other five species for Cd phyto-remediation, and its well-coordinated physiological changes under Cd exposure confer the great Cd tolerance of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号