首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The flows of paper are analyzed throughout the papermaking processes, with the year 2007 and Korea defined as the system boundaries. In practice, the statistical data on the production, import and export of paper or pulp can be collected with relative ease from the government and industrial associations. However, the input data regarding the volumes of pulp and wastepaper used in different paper products, such as newsprint, printing papers, sanitary and household papers, specialty papers, and corrugating board base, are difficult to obtain because such information is generally kept confidential in the course of corporate operations.The production processes of paper products in Korea are modeled using information on raw materials, their compositions and production yields of products in order to identify and quantify the amounts of pulp and wastepaper used in each paper product. The material flows of paper are then analyzed based on the calculation model derived from the correlation of input and output flows between the individual processes throughout the entire paper lifecycle. Accuracy analysis using both mean absolute error (MAE) and mean absolute percent error (MAPE) is conducted to verify the amounts of pulp and wastepaper calculated from the proposed model against the volumes of domestically consumed pulp and wastepaper provided in the national statistics. Although the calculated values for the past (i.e., the 1980s and 1990s) differ to some degree from the statistical values, the data for the 2000s have a relatively higher level of accuracy, with the MAPE of the total pulp and recycling volume at 5.39% and 5.30%, respectively, thus validating the adequacy of the proposed modeling method. The proposed calculation model can be effectively used in the material flow analysis (MFA) of paper to reduce the burden of data collection and obtain relatively accurate results.  相似文献   

2.
The life cycle analysis of a product enables one to assess its environmental quality. A simple, transparent method taking into account the processes of recycling in the life cycle is developed here. It permits dealing with all types of open loops of all sectors. The principles on which the proposed method is grounded are discussed.  相似文献   

3.
    
Zinc is one of the most widely applied nonferrous metals in China. Study on the applications and recurrent situation of zinc resources is of great strategic importance for the sustainable development of China's economy. In this paper, a dynamic material flow analysis (MFA) method has been adopted to analyze quantificationally zinc resources in China, as well as to analyze and predict the quantity of zinc product scrap and their recycling situation. The weighted average method was applied to calculate average lifetimes of six major zinc products in China. The average lifetimes of battery, zinc oxide, zinc die-casting alloys, zinc material products, galvanized zinc and brass are 0.17, 5.3, 11.1, 12, 21 and 30 years, respectively. Assuming the lifetime of zinc product group obeys the Weibull distribution and the consumption of zinc products varies linearly with time, the future consumption and scrap generation of zinc products will increase continuously. It is expected that they would increase from 49% to 76% during 2004–2020, respectively. Assuming the recycling rate remains unchanged with time, the zinc old scrap index, both the theoretical and actual values, would continue increasing in China. The values are expected to reach 0.402 and 0.076 by 2020, respectively. Therefore, the regeneration resource of depreciated zinc is actually insufficient in China. According to the scenario analysis, the actual value of old scrap indexes is positively correlated with the recycling rate of zinc products. Because galvanized products are the largest consumption area of zinc products in China, the influence of their recycling rate on old scrap index is obviously larger than other zinc products. Through the analysis, this paper suggests that the increase of the recycling rate of zinc products could not only improve to a certain degree China's relative shortage of zinc resources, but greatly relive the supply pressure of zinc in the world.  相似文献   

4.
An iron resource efficiency is proposed to define a measure of the natural iron resources saved in the steel manufacturing process. A simplified iron flow diagram is presented for the steel manufacturing process. The influences of various deviations in iron flow from the simplified iron flow diagram on iron resource efficiency are analyzed. The relationships between iron resource efficiency of unit processes and the final product are also discussed. As an example, data from a steel plant are used to analyze the influence of iron flow on its iron resource efficiency of finial product in the steel manufacturing process, the influence of iron resource efficiency of unit process on iron resource efficiency of the final product, and give some measures to improve the iron resource efficiency of the steel manufacturing process.  相似文献   

5.
    
Iron is an important basic resource for national economic development in China. It is of great strategic importance for the sustainable development of China's economy to study the utilization and circulation status of iron resources. In this paper, using the material flow and value chain analysis method, we quantitatively analyzed the value flow of iron resources in China. According to the value chain and price theory of element M, a value stream diagram of iron resources corresponding to the substance flow chart was plotted. Based on the previous material flow analysis result of iron resources, the diagram quantitatively depicted the value of the circulating flow of iron resources in China in 2011. The results show that by recycling materials, the value of the circulating flow of iron resources can bring considerable economic benefits to both producers and consumers. In the production stage, the expenditures of the entire economic system was reduced by 91.77 billion RMB by circulating iron and the income increased by 95 billion RMB by recycling home scrap, which was generated in the crude steel production stage. In the use stage of iron and steel products, the recycling of old scrap enabled the entire economic system to recover 370.78 billion RMB. It should be noted that analysis within a single framework of physical and economic characteristics of iron resources in the economic system can further extend the research chain of substance flow and value flow at the macro level, enhancing the economic value of substances flow research. In addition, by tracking and depicting the value flow cycle of elements, the improvement potentials and the value situations can be determined to provide useful information for conducting processing and technological innovation for waste minimization.  相似文献   

6.
Life cycle energy impacts of automotive liftgate inner   总被引:1,自引:0,他引:1  
This paper compares the life cycle energy use of a cast-aluminum, rear liftgate inner and a conventional, stamped steel liftgate inner used in a minivan. Using the best available aggregate life cycle inventory data and a simple spreadsheet-level analysis, energy comparisons were made at both the single-vehicle and vehicle-fleet levels. Since the product manufacture and use are distributed over long periods of time that, in a fleet, are not simple linear combinations of single product life cycles. Thus, it is all the products in use over a period of time, rather than a single product, that are more appropriate for the life cycle analysis. Using a set of consistent data, analyses also examine sensitivity to the level of analysis and the assumptions to determine the most favorable materials with respect to life cycle energy benefits.As expected, life cycle energy impacts of aluminum are lower than steel at a single-vehicle level – energy savings are determined to be 1.8 GJ/vehicle. Most energy savings occur at the vehicle operation phase due to improved fuel economy from lightweighting. The energy benefits are realized only very close to the average vehicle life of 14 years. With the incremental growth of the vehicle fleet, it takes longer – about 21 years – for aluminum to achieve life cycle equivalence with steel. The number of years aluminum needs to achieve equivalence with steel was found to be quite sensitive to aluminum manufacturing energy and fuel economy. As the steel industry races to compete with other materials for automotive lightweighting, a systems approach, instead of part-to-part comparison, is more appropriate in the determination of viability of aluminum substitution from an energy perspective.  相似文献   

7.
To improve the efficiency of water use and reuse, a digitalized water network system was implemented in a steel industrial complex. The system consisted of four parts: online instrument and sensing devices, programmable logic controller, data communication network and control center based on expert knowledge. The system achieved real-time monitoring, diagnosis, and early warning of cooling water system using data collected inline, and enabled data connectivity and transmission of self-developed software applications on personal computer. This research used a steel enterprise as a case study. After the analysis of its cooling water system and water-saving potential using water balance test, a digitalized water network was evaluated and implemented, and we believe this network can be suitable for steel industry in general.  相似文献   

8.
The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing on global warming potentials. The consequence of choosing a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate was studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved biomass, in order to study the importance of the system boundary choices. For recycling, the choice of virgin paper manufacturing data is most important, but the results show that also the impacts from the reprocessing technologies fluctuate greatly. For the overall results the choice of the technology data is of importance when comparing recycling including virgin paper substitution with incineration including energy substitution. Combining an environmentally high or low performing recycling technology with an environmentally high or low performing incineration technology can give quite different results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system to include substitution of fossil fuel energy by production of energy from the saved biomass associated with recycling will give a completely different result. In this case recycling is always more beneficial than incineration, thus increased recycling is desirable. Expanding the system to include forestry was shown to have a minor effect on the results. As assessments are often performed with a set choice of data and a set recycling rate, it is questionable how useful the results from this kind of LCA are for a policy maker. The high significance of the system boundary choices stresses the importance of scientific discussion on how to best address system analysis of recycling, for paper and other recyclable materials.  相似文献   

9.
本文就广安县农业气候资源及其要素对农作物的适宜性进行了定量分析与评价,找到了气候资源的优势和限制因素,提出了开发、利用措施。  相似文献   

10.
A water footprint (WF) measures the total water consumed by a nation, business or individual by calculating the total water used during the production of goods and services. This paper extends the existing methods for WF to more localised levels for crops grown partly in open systems and partly in plastic-covered houses with multi-seasonal harvesting, such as the horticulture industry in Spain. This improvement makes it possible to visualise the links of EU tomato consumption to precise production sites in Spain and opens a debate to the usefulness of such findings. This paper also compares existing ecological methodologies with WF and argues that both life cycle analysis (LCA) and ecological footprint (EF) models could benefit from WF methods. Our results show that the EU consumes 957,000 tons of Spanish fresh tomatoes annually, which evaporates 71 Mm(3)/yr of water and would require 7 Mm(3)/yr of water to dilute leached nitrates in Spain. In Spain, tomato production alone evaporates 297 Mm(3)/yr and pollutes 29 Mm(3)/yr of freshwater. Depending upon the local agro-climatic character, status of water resources, total tomato production volumes and production system, the impact of EU consumption of fresh tomatoes on Spanish freshwater is very location specific. The authors suggest that business now seek to report and address negative impacts on the environment. WF opens the door to complex water relationships and provides vital information for policy actors, business leaders, regulators and managers to their draw, dependence and responsibilities on this increasingly scarce resource.  相似文献   

11.
Use of Life Cycle Assessment in Environmental Management   总被引:11,自引:0,他引:11  
The aim of this paper is to demonstrate how life cycle assessment (LCA) can be used to develop strategic policies that can lead to a minimization of the environmental burden resulting from the provision of services or the manufacture, use, and disposal of products within the economy. We accomplish this aim by presenting a case study that evaluates the greenhouse gas contributions of each stage in the life cycle of containerboard packaging and the potential impact on emissions of various policy options available to decision-makers. Our analysis showed that, in general, the most useful strategy was to recycle the used packaging. However, our analysis also indicated that when measures are taken to eliminate sources of methane emissions, then recycling is no longer beneficial from a greenhouse perspective. This is because the process energy required in the form of gas and electricity is substantially greater for containerboard manufactured from recycled material than it is for virgin fiber.  相似文献   

12.
1 and C2 hydrocarbons (trichloroethane, trichloroethene, tetrachloroethene, dichloromethane). Measures aiming at the reduction of toxic emissions and ozone depletion potential (ODP) may possibly lead to a shift of environmental impacts towards higher energy consumption, emission of waste water, and volatile organic compounds (VOC) with photochemical oxidant creation potential (POCP). The present article concerns itself with a life cycle assessment of the three main degreasing processes in order to compare their integral environmental impacts with one another. This is supplemented by presenting the methodology of the life cycle inventory life cycle inventory analysis (LCI). Generally, the applicability of the established LCI method can be shown quite clearly. However, some difficulties arise, especially at the stage of the goal definition, as the use of the process and the functional unit cannot be pinned down as easily and neatly as for most other products. The definition of the use of the process and the functional unit is not as straightforward as for most products. Among the potential functional units identified are the mass of removed impurities, cleaning time, cleaning work, percentage of purity, throughput of parts, loads, mass or surface and virtual coefficients. The mass of removed impurities turned out to be the most suitable parameter for measuring the technical performance of degreasing processes. The article discusses background, purpose, scope, system boundaries, target group, process tree and representativeness of the present study.  相似文献   

13.
We have developed a method to analyse the annual material flow in a prefecture and have calculated environmental indicators for a prefecture. Material flow analysis (MFA) is important to clarify the structure of a regional society and obtain environmental indicators for a circular society. However, MFA has not advanced in local governments because of few local statistics. We have developed a method to analyse the annual material flow in Aichi prefecture from 1980 to 2000 using an input–output (I–O) table and statistics of Aichi. We have verified the accuracy of this method by comparing its results for 2000 which calculated on the basis of official I–O table for 1995 with the I–O table data for 2000; the correlation coefficient obtained in this case is greater than 0.95. Moreover, by performing MFA, we have estimated the resource consumption and decoupling indicator of each industry in Aichi prefecture from 1980 to 2000. We could obtain more detailed and accurate environmental indicators by using our method. From these results, we could estimate the progress of Aichi prefecture towards a circular society.  相似文献   

14.
Contemporary reports on the energy and environmental benefits of bioethanol have suggested that the cellulosic ethanol is significantly more efficient. To understand the development potential of energy crops in Taiwan, the present study has assessed the resources and cost inputs for the planning, harvesting, transporting, and storing procedures of the first generation energy crops during 2007–2010 with the perspective of LCA. In addition, a field investigation focusing on rice straw, the largest agricultural waste in Taiwan, has been conducted since 2010 to obtain fundamental data.This study further analyzes the first and second-generation feedstocks from the perspective of LCA based on field investigated data. Taiwan has not yet established an ethanol plant; therefore, this study established production data by simulating the production efficiency of an economical scale using parameters obtained through production trials, and proposed an evaluation model for the energy input, GHG, and production costs of bioethanol in Taiwan. The results of this study were cross-compared with foreign literature to explore the development potential of bioethanol in Taiwan. The results indicate that based on the current cellulosic ethanol technology in Taiwan, regarding the energy balance, GHG, and production costs, is less efficient than that of the first generation bioethanol.  相似文献   

15.
As the second largest corn producer in this world, China has abundant corn straw resources. The study assessed the energy balance and global warming potential of corn straw-based bioethanol production and utilization in China from a life cycle perspective. The results revealed that bioethanol used as gasoline and diesel blend fuel could reduce global warming potential by 10%–97% and 4%–96%, respectively, as compared to gasoline and diesel for transport. The total global warming potential, net global warming potential, net energy, and Net Energy Ratio per MJ ethanol generated from corn straw-based bioethanol system are estimated to be 0.20 kg CO2-eq, 0.012 kg CO2-eq, 0.60 MJ, and 1.87, respectively. By using sensitivity analysis, we found that the collected coefficient and compressing density of straw have a more obvious influence on energy balance; transportation distance has a more obvious influence on global warming potential emission factor. The by-products may be utilized as fertilizer, animal feed, cement replacement, or high-value lignin chemicals, which make a contribution to offsetting 0.28 MJ per MJ ethanol of energy consumption.  相似文献   

16.
The method of flow analysis, which is similar to economic input-output analysis, is presented as a means of making flow models of ecological systems more useful to environmental managers. This paper considers as an illustration the extent to which nitrogen fertilizer added toSpartina salt marsh sediments can enhance shellfish growth. Nitrogen flow models of both the Barataria Bay salt marsh complex of coastal Louisiana and the Sippewissett Marsh of western Cape Cod are analyzed. The analysis shows the transfer of added nitrogen to shellfish growth viaSpartina growth, decomposition, and detrital feeding to be considerably less efficient than its transfer toSpartina growth itself. These results are similar for both marsh systems, despite their great physical differences and despite the inclusion of considerably more microbial processing of nitrogen in the Barataria Bay model than in the Sippewissett models. The results suggest that the most efficient mechanism by which added nitrogen could enhance shellfish growth in salt marshes may have to bypass the route through theSpartina life cycle.  相似文献   

17.
研究太阳辐射、地表面辐射平衡与热量平衡对深入研究气候形成、地表能量转换、生态系统结构特性以及资源开发保护与国土整治等均具有重要意义。本文根据四川省内近200个台站30年整编的气候资料,并结合自然地理景观选用多种计算公式进行对比,然后采用统一的方法对全省热量平衡各分量逐月进行了计算和分析其时空分布特征。  相似文献   

18.
Solar energy is one of the most important renewable energy sources, but it is not available every time and every season. Thus, storing of solar energy is important. One of the popular methods of heat storage is use of phase change materials (PCMs) which have large thermal energy storage capacity. In this study, the heat storage tank in a domestic solar water heating system was chosen as control volume. The experiments were performed in the province of Elaz?g, Turkey, in November when solar radiation was weak due to cloudy sky. The heat storage tank of the system was modified to fill PCM between insulation and hot water part. A few PCMs which are Potassium Fluoride, Lithium Metaborate Dihydrate, Strontium Hydroxide Octahydrate, Barium Hydroxide Octahydrate, Aluminum Ammonium Sulfate, and Sodium Hydrogen Phosphate were analyzed to proper operating conditions using a Differential Scanning Calorimeter (DSC) and the best PCM was obtained with the Aluminum Ammonium Sulfate and Sodium Hydrogen Phosphate mixture. Thus, eutectic PCM was obtained and used in a heat storage tank of the solar water heating system. Energy and exergy analysis of heat storage tank was performed with and without the PCM. Energy and exergy analysis has shown that the heat storage tank with the PCM is more efficient than without the PCM and the maximum exergy efficiency was obtained as 22% with the heat storage tank with the PCM.  相似文献   

19.
大渡河干热河谷光、热资源充裕,雨、热同期,主、支流(沟)纵横交错,为农业灌溉提供了水源;经济林木资源优势相对突出,农业环境资源立体层次丰富。因此,本文提出了开发大渡河干热河谷农业环境资源的4种模式。  相似文献   

20.
A national material flow model for concrete, the most popular construction material in Ireland, was developed based on the framework of material flow analysis. Using this model the Irish concrete cycle for the year 2007 was constructed by analysing the material life cycle of concrete which consists of the three phases of: production (including extraction of raw materials and manufacture of cement), usage (ready-mix and other products) and waste management (disposal or recovery). In this year, approximately 35 million metric tonnes of raw materials were consumed to produce 5 million metric tonnes of cement and 33 million metric tonnes of concrete. Concrete production was approximately 8 metric tonnes per capita. By comparison, the concrete waste produced in that year was minimal at only 0.3 million metric tonnes. Irish building stock is young and there was little demolition of structures in the year of study. However this build up of construction stock will have implications for the future waste flows when the majority of stock built in the last decade (43% of residential stock was constructed in the last 15 years) reaches its end of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号