首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

2.
The environmental degradation caused by industrial agriculture, as well as the resulting social and health consequences, creates an urgency to rethink food production by expanding the moral imagination to include agricultural practices. Agricultural practices presume human use of the earth and acknowledge human dependence on the biotic community, and these relations mean that agriculture presents a separate set of considerations in the broader field of environmental ethics. Many scholars and activists have argued persuasively that we need new stories to rethink agricultural practice, however, the link—the story that does and can shape agricultural practice—has not yet been fully articulated in environmental discourse. My analysis explores how language has shaped existing agricultural models and, more important, the potential of story to influence agricultural practice. To do this, I draw upon cognitive theory to illustrate how metaphoric and narrative language structures thought and influences practice, beginning with my contention that industrial agriculture relies on a discourse of mechanistic relations between humans and a passive earth, language that has naturalized the chemically intensive monocultures prevalent in much of the American Midwest. However, alternative agricultures, including organic agriculture, agro-ecology, and ecological agriculture, emphasize qualities such as interdependence and reciprocity and do so as a deliberate response to the perceived inadequacies of industrial agriculture and its governing narrative. Exploring the different discourses of agricultural systems can help us think through different modalities for human relations with the biotic community and demonstrate story’s potential role in altering practice.  相似文献   

3.
In the final analysis, sustainable agriculture must derive from applied ecology, especially the principle of the regulation of the abundance and distribution of species (and, secondarily, their activities) in space and time. Interspecific competition in natural ecosystems has its counterparts in agriculture, designed to divert greater amounts of energy, nutrients, and water into crops. Whereas natural ecosystems select for a diversity of species in communities, recent agriculture has minimized diversity in favour of vulnerable monocultures. Such systems show intrinsically less stability and resilience to perturbations. Some kinds of crop rotation resemble ecological succession in that one crop prepares the land for successive crop production. Such rotations enhance soil organic processes such as decomposition and material cycling, build a nutrient capital to sustain later crop growth, and reduce the intensity of pest buildup. Species in natural communities occur at discrete points along the r-K continuum of reproductive maturity. Clearing forested land for agriculture, rotational burning practices, and replacing perennial grassland communities by cereal monocultures moves the agricultural community towards the r extreme. Plant breeders select for varieties which yield at an earlier age and lower plant biomass, effectively moving a variety towards the r type. Features of more natural landscapes, such as hedgerows, may act as physical and biological adjuncts to agricultural production. They should exist as networks in agricultural lands to be most effective. Soil is of major importance in agroecosystems, and maintaining, deliberately, its vitality and resilience to agricultural perturbations is the very basis of sustainable land use.  相似文献   

4.
Up to now, several scientific works have noted that the organic sector resembles more and more conventional farming’s structures, what is widely known as the “conventionalization” thesis. This phenomenon constitutes an area of conflict between organic farming’s original vision and its current reality and raises ethical and social questions concerning the structure of agricultural systems of production and their interactions with the socio-economic and natural environment. The main issue of this dialogue is the concept of sustainable agriculture, which for scientists and policymakers is a means to express their vision of a better agriculture. In this article we focus on agricultural sustainability in the context of capitalist production as conducted by the two subsystems of agro-industrial system. As we have proposed in this article, the relationship between organic agriculture, defined by two essential components (prevention and direct marketing), and the agro-industrial complex, defined by two subsystems, indicates the degree of agricultural sustainability. The investigation of this relationship can be extremely useful as it may lead those involved in the discussion of sustainability to identify the key aspects of sustainable agriculture. In order to investigate the interaction of organic farming with the agro-industrial complex, a survey was conducted in Central Macedonia, Northern Greece, involving local organic farms. The results of our study indicate that a large proportion of organic producers did not differ substantially from their counterparts in conventional agriculture in so far as their relationship with the agro-industrial complex is concerned. Finally, this research highlights two scenarios for the evolution of organic farming. The first is the full absorption of organic farming to the existing economic system and the second one is the development of organic farming in a radically opposite direction to conventional farming.  相似文献   

5.
Antibiotic uptake by plants from soil fertilized with animal manure   总被引:19,自引:0,他引:19  
Antibiotics are commonly added to animal feed as supplements to promote growth of food animals. However, absorption of antibiotics in the animal gut is not complete and as a result substantial amounts of antibiotics are excreted in urine and feces that end up in manure. Manure is used worldwide not only as a source of plant nutrients but also as a source of organic matter to improve soil quality especially in organic and sustainable agriculture. Greenhouse studies were conducted to determine whether or not plants grown in manure-applied soil absorb antibiotics present in manure. The test crops were corn (Zea mays L.), green onion (Allium cepa L.), and cabbage (Brassica oleracea L. Capitata group). All three crops absorbed chlortetracycline but not tylosin. The concentrations of chlortetracycline in plant tissues were small (2-17 ng g(-1) fresh weight), but these concentrations increased with increasing amount of antibiotics present in the manure. This study points out the potential human health risks associated with consumption of fresh vegetables grown in soil amended with antibiotic laden manures. The risks may be higher for people who are allergic to antibiotics and there is also the possibility of enhanced antimicrobial resistance as a result of human consumption of these vegetables.  相似文献   

6.
Nitrogen turnover on organic and conventional mixed farms   总被引:1,自引:0,他引:1  
Separate focus on crop fertilization or feeding practices inadequately describes nitrogen (N) loss from mixed dairy farms because of (1) interaction between animal and crop production and between the production system and the manager, and (2) uncertainties of herd N production and crop N utilization. Therefore a systems approach was used to study N turnover and N efficiency on 16 conventional and 14 organic private Danish farms with mixed animal (dairy) and crop production. There were significant differences in N surplus at the farm level (242 kg. N/ha. vs. 124 kg. N/ha. on conventional and organic dairy farms respectively) with a correlation between stocking rate and N surplus. N efficiency was calculated as the output of N in animal products divided by the net N import in fodder, manure and fertilizer. N turnover in herd and individual crops calculated on selected farms showed differences in organic and conventional crop N utilization. This is explained via a discussion of the rationality behind the current way of planning the optimum fertilizer application in conventional agriculture. The concept of marginal N efficiency is insufficient for correcting problems of N loss from dairy farms. Substantial reductions in N loss from conventional mixed dairy farms is probably unlikely without lower production intensity. The concept of mean farm unit N efficiency might be a way to describe the relation between production and N loss to facilitate regulation. This concept is linked to differing goals of agricultural development—i.e. intensification and separation vs. extensification and integration. It is discussed how studies in private farms—using organic farms as selected critical cases—can demonstrate possibilities for balancing production and environmental concern.  相似文献   

7.
The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste treatment, has great advantages, particularly in its low impact on the environment. However, there is a large increase in acidification.  相似文献   

8.
The use of organic farming technologies has certain advantages in some situations and for certain crops such as maize; however, with other crops such as vegetables and fruits, yields under organic production may be substantially reduced compared with conventional production. In most cases, the use of organic technologies requires higher labor inputs than conventional technologies. Some major advantages of organic production are the conservation of soil and water resources and the effective recycling of livestock wastes when they are available.  相似文献   

9.
One of the potential environmental effects of the recent rapid increase in the global agricultural area cultivated with transgenic crops is a change in soil microbially mediated processes and functions. Among the many essential functions of soil biota are soil organic matter decomposition, nutrient mineralization and immobilization, oxidation-reduction reactions, biological N fixation, and solubilization. However, relatively little research has examined the direct and indirect effects of transgenic crops and their management on microbially mediated nutrient transformations in soils. The objectives of this paper are to review the available literature related to the environmental effects of transgenic crops and their management on soil microbially mediated nutrient transformations, and to consider soil properties and climatic factors that may affect the impact of transgenic crops on these processes. Targeted genetic traits for improved plant nutrition include greater plant tolerance to low Fe availability in alkaline soils, enhanced acquisition of soil inorganic and organic P, and increased assimilation of soil N. Among the potential direct effects of transgenic crops and their management are changes in soil microbial activity due to differences in the amount and composition of root exudates, changes in microbial functions resulting from gene transfer from the transgenic crop, and alteration in microbial populations because of the effects of management practices for transgenic crops, such as pesticide applications, tillage, and application of inorganic and organic fertilizer sources. Possible indirect effects of transgenic crops, including changes in the fate of transgenic crop residues and alterations in land use and rates of soil erosion, deserve further study. Despite widespread public concern, no conclusive evidence has yet been presented that currently released transgenic crops, including both herbicide and pest resistant crops, are causing significant direct effects on stimulating or suppressing soil nutrient transformations in field environments. Further consideration of the effects of a wide range of soil properties, including the amount of clay and its mineralogy, pH, soil structure, and soil organic matter, and variations in climatic conditions, under which transgenic crops may be grown, is needed in evaluating the impact of transgenic crops on soil nutrient transformations. Future environmental evaluation of the impact of the diverse transgenic crops under development could lead to an improved understanding of soil biological functions and processes.  相似文献   

10.
Lead (Pb) contamination of the environment is an important human health problem. Children are vulnerable to Pb toxicity; it causes damage to the central nervous system and, in some extreme cases, can cause death. Lead is widespread, especially in the urban environment, and is present in the atmosphere, soil, water and food. Pb tends to accumulate in surface soil because of its low solubility, mobility, and relative freedom from microbial degradation of this element in the soil. Lead is present in soil as a result to weathering and other pedogenic processes acting on the soil parent material; or from pollution arising caused by the anthropogenic activities; such as mining, smelting and waste disposal; or through the adoption of the unsafe and unethical agricultural practices such as using of sewage sludge, and waste water in production of vegetable crops or cultivation of vegetables near highways and industry regions. Lead concentrations are generally higher in the leafy vegetables than the other vegetables. Factors affecting lead uptake included its concentration in the soil, soil pH, soil type, organic matter content, plant species, and unsafe agriculture practices. Generally, as Pb concentration increased; dry matter yields of roots, stems and leaves as well as total yield decreased. The mechanism of growth inhibition by lead involve: a decrease in number of dividing cells, a reduction on chlorophyll synthesis, induced water stress to plants, and decreased NO 3 - uptake, reduced nitrate and nitrite reductase activity, a direct effect of lead on protein synthesis, a decrease on the uptake and concentration of nutrients in plants. The strategies to minimize Pb hazard can be represented in: (a) Phytoremediation, through natural plants are able to bio-accumulate Pb in their above–ground parts, which are then harvested for removal such as, using Indian Mustard (Brassica juncea), Ragweed (Ambrosia artemisiifolia), Hemp Dogbane (Apocynum cannabium), or Poplar trees, which sequester lead in its biomass. (b) Good and ethical agricultural practices such as cultivation of vegetables crops as far from busy streets or highways and industry regions as well as nonuse of sewage sludge and waste water in cultivated soils. (c) Increasing the absorptive capacity of the soil by adding organic matter and humic acid. (d) Growing vegetable crops and cultivars with a low potential to accumulate lead, especially in soils exposed to atmospheric pollution. (e) Washing of leafy vegetables by water containing 1 % vinegar or peeling roots, tubers, and some fruits of vegetables before consumption may be an important factor in reducing the lead concentration.  相似文献   

11.
The concepts of sustainable agriculture, organic agriculture, regenerative agriculture, and alternative agriculture are receiving increasing attention in the academic and popular literature on present trends and future directions of agriculture. Whatever the reasons for this interest, there nevertheless remain differences of opinion concerning what counts as a sustainable agriculture. One of the reasons for these differences is that the moral underpinnings of a policy of sustainability are not clear. By understanding the moral obligatoriness of sustainability, we can come to understand precisely what must be sustained, and by implication, how. This article discusses the arguments that can be advanced for sustaining anything and initially concludes that our obligations to future generations entail sustaining more than just sufficient food production or an adequate resource base. Indeed, a tradition of care and community must underlie whatever agricultural and resource strategies we are to develop under the rubric of sustainability. A consideration of the larger social and environmental system in which agriculture operates and the constraints this system places on agriculture forces us to recognize that sustainability has to do with larger institutional issues, including our ability to incorporate our common morality democratically into our institutions, practices, and technologies.  相似文献   

12.
The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam.  相似文献   

13.
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.  相似文献   

14.
安全高效、资源节约、环境友好型的生态农业生产技术,已成为国际农业领域研究和关注的热点;发展高效生态(有机)农业,以新的强度和效能为长三角和我国现代化农业发展作贡献,是上海社会主义新农村建设的重大战略,是上海现代农业发展的必由之路。荷兰生态(有机)农业发展提供了以下成功经验:以生态学原理指导农业生产,实现生产生态共荣;在农产品生产中应用HACCP理论,加强农业生产的过程控制和质量管理;通过制定良好农业技术规范(Eurep-GAP),保障农业的可持续发展,保护生态环境。上海发展高效生态(有机)农业的对策建议:加强政策扶持,深化有机农业理论和技术研究,建立和规范与国际接轨的认证体系,以生态学的原理和原则指导农业生产和技术的发展。  相似文献   

15.
Industrialized agriculture currently substitutes many of the ecological functions of soil micro-organisms, macroinvertebrates, wild plants, and vertebrate animals with high cost inputs of pesticides and fertilizers. Enhanced biological diversity potentially offers agricultural producers a means of reducing the cost of their production. Conservation of biodiversity in agricultural landscapes may be greatly enhanced by the adoption of certain crop management practices, such as reduced pesticide usage or measures to prevent soil erosion. Still, the vast monocultures comprising the crop area in many Canadian agricultural landscapes are often of limited conservation value, thus the inclusion of appropriate wildlife habitat in and around arable lands is a fundamental prerequisite for the integration of wild species within agricultural landscapes. This review of current literature considers the potential for non-crop areas within agricultural landscapes to be reservoirs of agronomically beneficial organisms including plants, invertebrates, and vertebrate species. Non-crop habitats adjacent to crop land have been identified as significant for the maintenance of plant species diversity, for the conservation of beneficial pollinating and predatory insects, and as essential habitat for birds. A key component for enhancement of biodiversity is the reintroduction of landscape heterogeneity by (1) protection and enhancement of key non-crop areas, (2) smaller fields and farms, and (3) a greater mixture of crops, through rotation, intercropping and regional diversification. The benefits of increased biodiversity within arable lands are reviewed for various species groups. In the Canadian context, any serious attempt to derive significant agronomic benefit from increased biodiversity will require considerable changes in the agricultural programs and policies which shape mainstream industrialized agriculture. The problems of crop depredation by vertebrate species, weed and insect competition, which still represent significant impediments to the creation and proper management of wildlife habitat, are also discussed.  相似文献   

16.
The choice between organic and conventional agriculture for farmers is modeled as an ethical decision. Farmers are either loyal to one of the systems or they optimize between systems. This model is empirically validated through a survey among Swiss farmers. A cluster analysis separates farmers into loyal organic, loyal conventional, and optimizing farmers. However, the three resulting clusters bore some, but not all the necessary characteristics of “optimizers” and “loyals.” A probit analysis shows that loyal farmers have larger farms than optimizers. Loyal organic farmers receive less direct payments than optimizers, which confirms the utility-maximizing pattern of the latter group.  相似文献   

17.
This article compares four Dutch environmental certification schemes for agricultural food crops, analysing their methodology and the completeness of their criteria on five aspects: pesticide use, nutrient use, water management, energy and materials consumption, and habitat management. The least stringent of the labels, the MBT ('Environmentally Aware Cultivation') certificate, serves mainly to increase farmers' awareness of nutrient and pesticide use. With regard to both administrative obligations and actual management practices, the MBT label largely mirrors the terms of standing Dutch legislation. The CC ('Controlled Cultivation') and AMK ('Agro-Environmental') labels comprise more and more stringent criteria. With their restrictions on nutrient and pesticide use, these two labels serve as the two principal labels in the field of integrated agriculture. There is little difference between the two and it is recommended that they be merged, on the basis of a standardised definition of integrated agriculture. The EKO ('Organic Agriculture') label proceeds from different principles, but as a minimum should also comply with Dutch legislation without exception. For both integrated and organic agriculture, in addition to criteria on pesticide and nutrient use, criteria should also be developed for water management, energy and materials use and habitat management. The relationship between the criteria and their respective thresholds and Dutch legislation is also addressed. Existing criteria are frequently specified in such a way that the environmental benefits cannot be ascertained. This is a serious drawback for the parties further down the chain: auctioneers, retailers and consumers. It is recommended to develop qualitative guidelines for an Agricultural Stewardship Council at international level, like the Forest Stewardship Council, and a separate label for integrated agriculture per country comprising quantitative criteria for all relevant aspects of farming operations.  相似文献   

18.
A large section of the population (70%) of Uttarakhand largely depends upon agricultural based activities for their livelihood. Rural community of the mountains has developed several indigenous and traditional methods of farming to conserve the crop diversity and rejoice agrodiversity with religious and cultural vehemence. Traditional food items are prepared during occasion, festivals, weddings, and other religious rituals from diversified agrodiversity are a mean to maintain agrodiversity in the agriculture system. Agrodiversity is an insurance against disease and extreme climatic fluctuations, as a coping mechanism in times of scarcity, as a means to enhance overall productivity of farms, as a source of critical nutrition and medicine in the Himalayan region. The different traditional system of agriculture and indigenous method of maintaining soil fertility, socio-cultural and religious rituals has saved many crops that are under threatened category. But all these system and practices are ignored nauseatingly in hill agriculture policy, where more emphasis was given for plain areas. Less emphasis is being put on local systems that rely on existing natural, human, and social assets such as biodiversity, traditional knowledge, and social capital underpinning collective action to ensure food security. Of late, development planners have realized the importance of appropriate technologies and therefore have stressed the need for on-site training, and capacity building of user groups in rural areas of the region. Rural technology demonstration and training center have been supposed as a means disseminating technologies enabling improvement in the yield potential of farms, income generation from off-farm activities, and conservation and efficient use of natural resources. There is a strong need to bring desirable changes in the agricultural policy, research, and development in reference to mountainous regions. The present paper describe present scenario of agriculture, traditional, and socio-cultural practices of retaining soil fertility and agrodiversity, policy dimensions, and strategies for management of the Himalayan agroecosystems.  相似文献   

19.
There are a number of agricultural farming practices that are controversial. These may include using chemical fertilizers, pesticides, and herbicides, and planting genetically modified crops, as well as the decision to dehorn cattle rather than raise polled cattle breeds. We use data from a survey of Missouri crop and livestock producers to determine whether a farmer’s ethical framework affects his or her decision to engage in these practices. We find that a plurality of farmers prefer an agricultural policy that reflects principles based on rights rather than principles of utilitarianism or justice. Furthermore, after controlling for personal and farm characteristics, we find a positive correlation between farmers preferring a rights-based policy and a farmer’s use of chemical farm inputs and polled rather than horned cattle. We also find that a combination of ethical framework and farm and farmer characteristics correlate with decisions to use farm chemicals, while only farm and farmer characteristics affect the decision to plant GM crops and only a farmer’s ethical framework affects the decision to use polled cattle.  相似文献   

20.
We used Life Cycle Assessment to scenario model the potential reductions in cumulative energy demand (both fossil and renewable) and global warming, acidifying, and ozone-depleting emissions associated with a hypothetical national transition from conventional to organic production of four major field crops [canola (Brassica rapa), corn (Zea mays), soy (Glycine max), and wheat (Triticum aestivum)] in Canada. Models of these systems were constructed using a combination of census data, published values, and the requirements for organic production described in the Canadian National Organic Standards in order to be broadly representative of the similarities and differences that characterize these disparate production technologies. Our results indicate that organic crop production would consume, on average, 39% as much energy and generate 77% of the global warming emissions, 17% of the ozone-depleting emissions, and 96% of the acidifying emissions associated with current national production of these crops. These differences were almost exclusively due to the differences in fertilizers used in conventional and organic farming and were most strongly influenced by the higher cumulative energy demand and emissions associated with producing conventional nitrogen fertilizers compared to the green manure production used for biological nitrogen fixation in organic agriculture. Overall, we estimate that a total transition to organic production of these crops in Canada would reduce national energy consumption by 0.8%, global warming emissions by 0.6%, and acidifying emissions by 1.0% but have a negligible influence on reducing ozone-depleting emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号