首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of an integrative passive sampler that consists of a C18 Empore disk sorbent receiving phase fitted with low density polyethylene membrane was optimised for the measurement of time-weighted average concentrations of hydrophobic micropollutants in water. A substantial improvement of sampling characteristics including the rate of sampling and the sampling precision was achieved by decreasing the internal sampler resistance to mass transfer of hydrophobic organic chemicals. This was achieved by adding a small volume of n-octanol, a solvent with high permeability (solubility [times] diffusivity) for target analytes, to the interstial space between the receiving sorbent phase and the polyethylene diffusion-limiting membrane.  相似文献   

2.
The development of convenient and competitive devices and methods for monitoring of organic pollutants in the aquatic environment is of increasing interest. An integrative passive sampling system has been developed which consists of a solid poly(dimethylsiloxane) (PDMS) material (tube or rod), acting as hydrophobic organic receiving phase, enclosed in a water-filled or an air-filled low-density polyethylene (LDPE) membrane tubing. These samplers enable the direct analysis of the pollutants accumulated during exposure in the receiving phase by thermodesorption-GC/MS, avoiding expensive sample preparation and cleanups. The capabilities of these sampling devices were studied for the sampling of 20 persistent organic pollutants (chlorobenzenes, hexachlorocyclohexanes, p,p'-DDE, PAHs, and PCBs) in laboratory exposure experiments. For the three sampler designs investigated the uptake of all target analytes was integrative over exposure periods up to 9 days (except PCB 101). The determined sampling rates range from 4 to 1340 microl h(-1) for the water-filled samplers and from 20 to 6360 microl h(-1) for the air-filled ones, respectively. The sampling rate of the analytes is dependent on their molecular weight, partition between water and sampler media (PDMS, polyethylene, water, air) and also of the sampler design. The passive samplers enable the estimation of time-weighted average (TWA) concentration of water pollutants in the lower ng l(-1) to pg l(-1) range.  相似文献   

3.
Suddenly occurring and time limited chemical exposures caused by unintended incidents might pose a threat to many workers at various work sites. Monitoring of exposure during such occasional incidents is challenging. In this study a compact, low-weight and personal semi-automatic pumped unit for sampling of organic vapor phase compounds from occupational air during sporadic and suddenly occurring incidents has been developed, providing simple activation by the worker potentially subjected to the sudden occurring exposures when a trained occupational hygienist is not available. The sampler encompasses a tube (glass or stainless steel) containing an adsorbent material in combination with a small membrane pump, where the adsorbent is capped at both ends by gas tight solenoid valves. The sampler is operated by a conventional 9 V battery which tolerates long storage time (at least one year), and is activated by pulling a pin followed by automatic operation and subsequent closing of valves, prior to shipping to a laboratory. The adjustable sampling air flow rate and the sampling time are pre-programmed with a standard setting of 200 mL min(-1) and 30 min, respectively. The average airflow in the time interval 25-30 min compared to average airflow in the interval 2-7 min was 92-95% (n = 6), while the flow rate between-assay precisions (RSD) for six different samplers on three days each were in the range 0.5-3.7%. Incident sampler recoveries of VOCs from a generated VOC atmosphere relative to a validated standard method were between 95 and 102% (+/-4-5%). The valves that seal the sampler adsorbent during storage have been shown to prevent an external VOC atmosphere (500 mg m(-3)) to enter the adsorbent tube, in addition to that the sampler adsorbent is storable for at least one month due to absence of ingress of contaminants from internal parts. The sampler was also suitable for trapping of semi-volatile organophosphates.  相似文献   

4.
被动式个体采样器在环境监测中的应用   总被引:1,自引:0,他引:1  
本文报道了用被动式个体采样器监测空气小常见污染物NO2,SO2.提出了样品测定之前对每种污染物的具体实验要求。对济南市有关场所空气进行了监测。总结了个体采样器的优点。  相似文献   

5.
A novel passive water sampler for in situ sampling of antibiotics   总被引:1,自引:0,他引:1  
Passive water sampling has several advantages over active methods; it provides time-integrated data, can save on time and cost compared to active methods, and yield high spatial resolution data through co-deployment of simple, cheap units. However, one problem with many sampler designs in current use is that their uptake rates for trace substances of interest are flow-rate dependent, thereby requiring calibration data and other information to enable water concentrations to be derived from the mass per sampler. However, the 'family' of samplers employing the principle of diffusive gradients in thin films (DGT) provides an in situ means of quantitatively measuring labile species in aquatic systems without field calibration. So far, this technique has only been tested and applied in inorganic substances: metals, radionuclides, nutrients, etc. Design and applications of DGT to trace organic contaminants ('o-DGT') would be of widespread interest. This study describes the laboratory testing and performance characteristics of o-DGT, with the antibiotic sulfamethoxazole (SMX) as a model compound and XAD18 as the novel binding agent. o-DGT uptake of SMX increased with time and decreased with diffusion layer thickness, confirming the principle for SMX. XAD18 showed sufficiently high capacity for SMX for routine field applications. o-DGT measurement of SMX was independent of pH (6-9) and ionic strength (0.001-0.1 M) and not affected by flow rate once above static conditions. The diffusion coefficient of SMX in the sampler was measured using an independent diffusion cell and information is presented to allow temperature correction and derivation of aqueous concentrations from deployed samplers. The potential use of o-DGT for in situ measurement of pharmaceutical antibiotics is confirmed by this study and applications are briefly discussed.  相似文献   

6.
In this paper, we discuss the advantages and drawbacks of POCIS (Polar Organic Chemical Integrative Sampler) for the evaluation of river water quality downstream of wastewater treatment plants. POCIS proved well adapted to sampling alkylphenols and several pharmaceuticals. Concentration factors and the decrease in limits of quantification, compared to grab water sample analyses, were significant except for hormones, β-blockers and bronchodilators. Promising preliminary results obtained in situ on deuterated atenolol used as a performance reference compound need to be confirmed in-lab. This work confirms that POCIS is a valuable tool for monitoring hydrophilic organic molecules in river and wastewaters.  相似文献   

7.
A cellulose acetate membrane, positioned in a passive sampler system, was coated with the perfluorinated polymer Nafion. Aqueous metal transport through the membrane and the Nafion film was investigated. The Nafion-coated membrane prevents the transport of metals bound to natural organic material to the receiving phase in the passive sampler, while copper associated with small synthetic ligands pass through the Nafion film. Increasing thickness of the Nafion film decreases the metal uptake rate to the receiving phase in the passive sampler and increases the response time. A decreased response time for the passive sampler would provide a better estimation of rapid changes in concentration, particularly for dynamic aquatic systems such as urban runoff. Limited biofouling protection with the Nafion coating was demonstrated by growth inhibition of natural periphyton communities on glass surfaces.  相似文献   

8.
While polyurethane foam (PUF) disk passive air samplers are employed increasingly to monitor persistent organic pollutants in indoor air, they essentially sample only the vapour phase. As a previous investigation of the vapour : particle phase partitioning of hexabromocyclododecanes HBCDs in (outdoor) air reported them to be present largely in the particulate phase, we monitored three offices using active air samplers. In each, approximately 65% of HBCDs were present in the vapour phase, suggesting PUF disk passive samplers are suitable for monitoring HBCDs in indoor air. Concentrations in the three offices (239-359 pg Sigma HBCD m(-3)) exceed substantially those reported in outdoor air from the United States (2.1-11 pg Sigma HBCD m(-3)), but are in line with outdoor air from Stockholm. The relative abundance of the three principal diastereomers in office air was closer to that found in technical HBCD formulations (i.e. predominantly gamma-HBCD) than in most US outdoor air samples. Time integrated air concentrations of alpha-, beta-, and gamma-HBCD were obtained for an office using a low volume sampler operated over a 50 d period alongside PUF disk samplers. This calibration exercise yielded the following passive air sampling rates for both a fully- and part-sheltered PUF disk sampler design: for alpha-, beta-, and gamma-HBCD, 0.87, 0.89, and 0.91 m3 d(-1) respectively (fully-sheltered) and 1.38, 1.54, and 1.55 m3 d(-1) respectively (part-sheltered). Deployment of the part-sheltered configuration yielded concentrations approximately 35% lower than those obtained using a high volume sampler, consistent with PUF disk samplers measuring primarily the vapour phase.  相似文献   

9.
A new, passive particle deposition air sampler, called the Einstein-Lioy Deposition Sampler (ELDS), has been developed to fill a gap in passive sampling for near-field particle emissions. The sampler can be configured in several ways: with a protective hood for outdoor sampling, without a protective hood, and as a dust plate. In addition, there is an XRF-ready option that allows for direct sampling onto a filter-mounted XRF cartridge which can be used in conjunction with all configurations. A wind tunnel was designed and constructed to test the performance of different sampler configurations using a test dust with a known particle size distribution. The sampler configurations were also tested versus each other to evaluate whether or not the protective hood would affect the collected particle size distribution. A field study was conducted to test the sampler under actual environmental conditions and to evaluate its ability to collect samples for chemical analysis. Individual experiments for each configuration demonstrated precision of the sampler. The field experiment demonstrated the ability of the sampler to both collect mass and allow for the measurement of an environmental contaminant i.e. Cr(6+). The ELDS was demonstrated to be statistically not different for Hooded and Non-Hooded models, compared to each other and the test dust; thus, it can be used indoors and outdoors in a variety of configurations to suit the user's needs.  相似文献   

10.
An atmospheric deposition sampler was validated with respect to polybrominated diphenyl ethers (PBDEs), a compound group that is widely used as flame retardants in many types of consumer products. The deposition sampler consists of an adsorption cartridge that is connected to a glass funnel. Extraction tests with spiked cartridges using soxhlet extraction with acetone revealed recoveries of >80% for all of the investigated PBDEs. Once adsorbed, PBDEs are stable, as proven by extractions of spiked cartridges that were stored outdoors and collected after different periods of time, up to 84 days. High recoveries indicate that degradation of adsorbed PBDEs does not play a role under realistic field conditions. Bulk deposition rates of PBDEs were determined in a field test with 3 replicates, and a possible breakthrough of target compounds was assessed in the field using a second adsorption cartridge in series. No breakthrough of target compounds could be observed within a sampling period of 61 days, and a bulk deposition rate of approximately 1 ng m(-2) day(-1) for the sum of all analysed PBDEs was measured. The highest deposition rates were measured for octa-brominated congeners, followed by BDEs 99, 183, 153, and 47. Overall, the sampler was successfully validated regarding the atmospheric deposition of PBDEs.  相似文献   

11.
The concentration of dissolved reactive phosphorus (DRP) in rivers can change intermittently within minutes depending on the weather and water discharge (Q), or activities in the watershed. Accordingly, accurate estimation of the annual DRP load requires frequent sampling or even continuous monitoring, which is laborious and cost-intensive. We present the design and laboratory evaluation of a new, robust, low-cost, low-tech device based on passive samplers (P-traps). The traps use Fe-(oxy)hydroxide coated quartz sand as an adsorbent enclosed in a vertical grid of individual cells separated from the river water by filter membranes. They are inexpensive, easy to handle, resistant to repeated desiccation and immersion and exposable for several months. They permit estimation of discharge dependent time weighted average DRP concentrations (C-Q relationships) and annual P loads of rivers characterized by highly variable DRP concentrations with a relative accuracy of +/- 3%.  相似文献   

12.
In the study reported here semipermeable membrane devices (SPMDs) were used to sample 28 PAHs and 19 PCBs in the gas phase in 15 single-family houses located in an area where domestic wood burning is widespread. Eight of the households used wood burning appliances whereas the others used other systems for residential heating. Most of the studied compounds were found in the houses: the PAHs at levels that were similar to or slightly higher than published SPMD-sampled levels for background or urban sites in Sweden, and the PCBs at levels that were somewhat lower than those recently found in both indoor and outdoor urban locations. A principal component analysis revealed that wood-burning heating systems may contribute to PAHs in indoor air. The sources may be emissions indoors or penetration from outdoors. The convenience of SPMD technology facilitates its use for semi-quantitative screening and monitoring of various persistent organic compounds indoors in dwellings and working environments.  相似文献   

13.
The use of a large volume polyurethane foam (PUF) sampler was validated for rapid extraction of persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), in raw water and treated water from drinking water plants. To validate the recovery of target compounds in the sampling process, a (37)Cl-labeled standard was spiked into the 1st PUF plug prior to filtration. An accelerated solvent extraction method, as a pressurized liquid extractor (PLE), was optimized to extract the PUF plug. For sample preparation, tandem column chromatography (TCC) clean-up was used for rapid analysis. The recoveries of labeled compounds in the analytical method were 80-110% (n = 9). The optimized PUF-PLE-TCC method was applied in the analysis of raw water and treated potable water from seven drinking water plants in South Korea. The sample volume used was between 18 and 102 L for raw water at a flow rate of 0.4-2 L min(-1), 95 and 107 L for treated water at a flow rate of 1.5-2.2 L min(-1). Limit of quantitation (LOQ) was a function of sample volume and it decreased with increasing sample volume. The LOQ of PCDD/Fs in raw waters analyzed by this method was 3-11 times lower than that described using large-size disk-type solid phase extraction (SPE) method. The LOQ of PCDD/F congeners in raw water and treated water were 0.022-3.9 ng L(-1) and 0.018-0.74 ng L(-1), respectively. Octachlorinated dibenzo-p-dioxin (OCDD) was found in some raw water samples, while their concentrations were well below the tentative criterion set by the Japanese Environmental Ministry for drinking water. OCDD was below the LOQ in the treated drinking water.  相似文献   

14.
Two types of passive sampler were developed for the long-term monitoring of semivolatile organic compounds (SOCs) in air. They consist of poly(dimethylsiloxane) (PDMS)-coated stir bars (type A) or silicone tubing (type B), acting as a solid receiving medium, enclosed in a heat-sealed low-density polyethylene (LDPE) membrane. These samplers combine the advantages of integrative passive sampling with those of analysing accumulated analytes by thermodesorption-GC-MS, whilst avoiding the use of solvents and expensive sample preparation and cleanup steps. The performance of these samplers was investigated for the integrative sampling of SOCs, including alpha- and gamma-hexachlorocyclohexanes, hexachlorobenzene, 2,4,4'-trichlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl and fluoranthene, in laboratory exposure experiments under controlled conditions. For both types of sampler, the uptake of all the analytes investigated was linear over an exposure period of 15 days. The sampling rates calculated ranged from 70 to 320 ml h(-1) (sampler A) and 630 to 4300 ml h(-1) (sampler B). The passive samplers are able to detect low time-weighted average air concentrations in the pg m(-3) range. The small, robust and inexpensive sampling devices were tested successfully for the long-term air monitoring of semivolatile organic pollutants in a polluted area over an exposure period of up to 28 days.  相似文献   

15.
The interest in the identification of volatile organic compounds in the workplace has been a major focus of many National Institute for Occupational Safety and Health (NIOSH) field studies. A primary technique for sampling and analysis of these compounds is summarized by NIOSH Manual of Analytical Methods (NMAM) 2549. This is a screening method that uses a multi-bed sorbent to trap a wide variety of compounds and compound classes. Thermal desorption techniques are used as a first attempt to characterize potential contaminants in a workplace and to determine what future sampling and analyses must be performed. Field examples are provided to show the versatility of thermal desorption methods and techniques. Due to their sensitivity, thermal desorption tube methods are sometimes required in order to measure the workplace concentrations of unusual compounds. In other situations, the exposures are too high or varied to make thermal desorption tubes practical. In these cases, the identification of contaminants with thermal desorption tubes leads to new method developments for the quantification of specific compounds using more conventional solid sorbent-solvent desorption based methods.  相似文献   

16.
Capillary microextractor (CME) in combination with a gas chromatograph-mass spectrometer (GC-MS) was employed for the determination of trace priority hazardous substances in water. Three groups of semivolatile organic compounds (SVOCs), i.e., chlorinated hydrocarbons, pesticides and polycyclic aromatic hydrocarbons (PAHs), were simultaneously determined. SVOCs were extracted from 7 mL of water samples on a 100 cm commercial gas chromatographic column (0.32 mm id x film thickness 0.25 microm, HP-5 capillary column) and eluted with only 3 microL of acetonitrile. The extractant was analyzed by GC-MS in the selected ion monitoring mode. The method showed good linearity over the concentration range 10 ng L(-1) to 3.0 mg L(-1) with correlation coefficients (r) greater than 0.99 and low limits of detection ranged from 10 ng L(-1) to 1.0 mg L(-1). High recovery (more than 80%) was obtained with relative standard deviation less than 10%. The method was successfully applied for trace level analyses of SVOCs in water samples.  相似文献   

17.
Lipid-filled semipermeable membrane devices (SPMDs) are receiving increasing attention as passive, in situ samplers for the assessment of environmental pollutant exposure. Although SPMDs have been successfully used in a variety of field studies in surface waters, only a few studies have addressed their characteristics as groundwater samplers. In this study, the performance of the SPMDs for monitoring organic contaminants in groundwater was evaluated in a pilot field application in an area severely contaminated by chemical waste, especially by chlorinated hydrocarbons. The spatial distribution of hydrophobic groundwater contaminants was assessed using a combination of passive sampling with SPMDs and non-target semiquantitative GC-MS analysis. More than 100 contaminants were identified and semiquantitatively determined in SPMD samples. Along the 6 field sites under investigation, a large concentration gradient was observed, which confirms a very limited mobility of hydrophobic substances in dissolved form in the aquifer. The in situ extraction potential of the SPMD is limited by groundwater flow, when the exchange volume of well water during an exposure is lower than the SPMD clearance volume for the analytes. This study demonstrates that SPMDs present a useful tool for sampling and analyzing of groundwater polluted with complex mixtures of hydrophobic chemicals and provides guidance for further development of passive sampling technology for groundwater.  相似文献   

18.
A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s?1, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.  相似文献   

19.
This work aimed to evaluate whether the performance of passive sampling devices in measuring time-weighted average (TWA) concentrations supports their application in regulatory monitoring of trace metals in surface waters, such as for the European Union's Water Framework Directive (WFD). The ability of the Chemcatcher and the diffusive gradient in thin film (DGT) device sampler to provide comparable TWA concentrations of Cd, Cu, Ni, Pb and Zn was tested through consecutive and overlapping deployments (7-28 days) in the River Meuse (The Netherlands). In order to evaluate the consistency of these TWA labile metal concentrations, these were assessed against total and filtered concentrations measured at relatively high frequencies by two teams using standard monitoring procedures, and metal species predicted by equilibrium speciation modeling using Visual MINTEQ. For Cd and Zn, the concentrations obtained with filtered water samples and the passive sampling devices were generally similar. The samplers consistently underestimated filtered concentrations of Cu and Ni, in agreement with their respective predicted speciation. For Pb, a small labile fraction was mainly responsible for low sampler accumulation and hence high measurement uncertainty. While only the high frequency of spot sampling procedures enabled the observation of higher Cd concentrations during the first 14 days, consecutive DGT deployments were able to detect it and provide a reasonable estimate of ambient concentrations. The range of concentrations measured by spot and passive sampling, for exposures up to 28 days, demonstrated that both modes of monitoring were equally reliable. Passive sampling provides information that cannot be obtained by a realistic spot sampling frequency and this may impact on the ability to detect trends and assess monitoring data against environmental quality standards when concentrations fluctuate.  相似文献   

20.
This study describes the field evaluation of a tailor-made new glass passive sampler developed for the determination of NO(2), based on the collection on triethanolemine (TEA)-coated fibre filter paper. The sampler has been derived from a Palmes design. The overall uncertainty of the sampler was determined by using Griess-Saltzman ASTM D 1607 standard test method as a reference method. The agreement between the results of the passive sampler and the reference method was +/-7.90% with the correlation coefficient of 0.90. Method precision in terms of coefficient of variance (CV) for three simultaneously applied passive samplers was 8.80%. The uptake rate of NO(2) was found to be 2.49 ml/min in a very good agreement with the value calculated from theory (2.63 ml/min). Sampler detection limit was 1.99 microg/m(3) for an exposure period of 1 week and the sampler can be stored safely for a period of up to 6 weeks before exposure. A comparison of the sampler performance was conducted against a commercially available diffusion tube (Gradko diffusion tube). The results from the applied statistical paired t test indicated that there was no significant difference between the performances of two passive samplers (R (2) > 0.90). Also, another statistical comparison was carried out between the dark and transparent glass passive samplers. The results from the dark-colour sampler were higher than that from the transparent sampler (approximately 25%) during the summer season because of the possible photodegradation of NO(2)-TEA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号