首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Abstract:  For many regions worldwide, multiple and often contrasting biogeographic classifications exist that are derived from a variety of taxa and techniques. This presents a challenge for managers who must choose appropriate large-scale spatial frameworks for systematic conservation planning. We demonstrate how systematically collected community data can be used to evaluate existing biogeographic classifications, identify the most appropriate metric for biogeographic patterns seen in other taxonomic groups, and develop an independent biogeographic classification scheme for systematic conservation planning. We evaluated 6 existing biogeographic classifications for New Zealand's nearshore marine environment with community-similarity metrics derived from abundance and presence–absence data for macroalgae (107 species) and mobile macroinvertebrates (44 species). The concordance between community metrics and the previous classifications was high, as indicated by a high multivariate classification success (CS) (74.3–98.3%). Subsequently, we carried out an independent classification analysis on each community metric to identify biogeographic units within a hierarchical spatial framework. The classification derived from macroalgal presence–absence data achieved the highest CS and could be used as a mesoscale classification scheme in which 11 regional groupings (i.e., bioregions) (CS = 73.8–84.8%) are nested within northern and southern biogeographic provinces (CS = 90.3–98.7%). These techniques can be used in systematic conservation planning to inform the design of representative and comprehensive networks of marine protected areas through evaluation of the current coverage of marine reserves in each bioregion. Currently, 0.22% of the territorial sea around mainland New Zealand is protected in no-take marine protected areas in which 0–1.5% of each bioregion represented.  相似文献   

2.
Abstract: We tested the unsustainable fishing hypothesis that species in assemblages of fish differ in relative abundance as a function of their size, growth rates, vagility, trophic level, and diet by comparing species composition in historical bone middens, modern fisheries, and areas closed to fishing. Historical data came from one of the earliest and most enduring Swahili coastal settlements (approximately AD 750–1400). Modern data came from fisheries near the archeological site and intensively harvested fishing grounds in southern Kenya. The areas we sampled that were closed to fishing (closures) were small (<28 km2) and permanent. The midden data indicated changes in the fish assemblage that are consistent with a weak expansion of fishing intensity and the unsustainable fishing hypothesis. Fishes represented in the early midden assemblages from AD 750 to 950 had longer life spans, older age at maturity, and longer generation times than fish assemblages after AD 950, when the abundance of species with longer maximum body lengths increased. Changes in fish life histories during the historical period were, however, one‐third smaller than differences between the historical and modern assemblages. Fishes in the modern assemblage had smaller mean body sizes, higher growth and mortality rates, a higher proportion of microinvertivores, omnivores, and herbivores, and higher rates of food consumption, whereas the historical assemblage had a greater proportion of piscivores and macroinvertivores. Differences in fish life histories between modern closures and modern fishing grounds were also small, but the life histories of fishes in modern closures were more similar to those in the midden before AD 950 because they had longer life spans, older age at maturity, and a higher proportion of piscivores and macroinvertivores than the modern fisheries. Modern closures and historical fish assemblages were considerably different, although both contained species with longer life spans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号