首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of polylactide (PLA)-b-poly (dimethyl siloxane) (PDMS) linear block copolymers and their use in blends with pure-PLA are described. PLA-b-PDMS linear block copolymers were obtained by the transesterification reaction in chloroform solution between poly(dimethyl siloxane) bis (2-aminopropyl ether) (molecular weight 2,000?Da) with PLA in the presence of stannous octoate. Molecular weights (Mw) of the block copolymers were varied from 53,800 to 63,600?Da while that of pristine PLA was 73,600?Da. The copolymers obtained were purified by fractional precipitation and then characterized by 1H NMR, FTIR, GPC, viscometry and DSC techniques. Blends of pure PLA with PLA-b-PDMS block copolymers displayed improved elastic properties (elongation up to 140%) compared to pure PLA (elongation ~9%). Thermal, mechanical and morphological characterization of the blends were also conducted.  相似文献   

2.
Effects of UV/photo-initiator treatments on crystal formation and properties of polylactide (PLLA) films are investigated. Camphorquinone and riboflavin photo-initiator solutions in methanol are employed in the treatment of amorphous quenched PLLA films. Results from FTIR, ATR-FTIR, DSC, XRD, and SEM show evidence of crystalline domain formation dispersed throughout the film. 1H NMR and GPC results suggest that the molecular weights of the polymer slightly decrease after the treatment. This indicates that the treatment leads to a diffusion of the photo-initiators molecules through the film matrix, resulting in a low degree of PLLA chain scissions, and formation of carboxylic acid and hydroxyl polar end groups. This, in turn, induces PLLA crystallization, which imposes profound effects on surface wettability and physical and mechanical properties of the samples. The process can be applied in optimizing properties of PLLA films with shorter treatment times, compared to other methods, which is suitable for use in various fields; especially those that require specific characteristics like biomedical, packaging and environmental applications.  相似文献   

3.
Soybean Oil-Based Photo-Crosslinked Polymer Networks   总被引:1,自引:0,他引:1  
Novel soybean oil-based crosslinked polymer networks were prepared by UV photopolymerization and their mechanical properties were evaluated. Poly(ethylene glycol) diacrylate (PEGDA) and biodegradable poly(ε-caprolactone) diacrylate (PCLDA) were synthesized and used as crosslinking agent to form crosslinked polymer networks by UV-initiated free-radical polymerization with acrylated epoxidized soybean oil (AESO). The synthesis of acrylate end-capped macromers was confirmed using FT-IR and 1H NMR spectroscopic techniques. Photopolymerization time, the composition of reaction mixture, and the type and length of crosslinking agent were changed to obtain crosslinked polymer networks with various mechanical properties. Polymers prepared from AESO and PCL degraded 6% of the initial weight in 24 days in phosphate buffer solution (pH 7.2) containing lipase enzyme. These potentially biodegradable and biocompatible polymers can be used as ecofriendly materials for biomedical and other applications to replace the existing petroleum-based polymers currently used.  相似文献   

4.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   

5.
As an attempt to synthesize new biodegradable polymers from renewable cellulose resources, melt polycondensation of 5-hydroxylevulinic acid (5-HLA) was reported for the first time. The resulting product, poly(5-hydroxylevulinic acid) (PHLA), was synthesized and characterized with GPC, FTIR, 1H NMR and DSC. The in vitro degradation behaviors in phosphate-buffered saline (PBS) and in deionized water (DW) were also examined. The molecular weight of PHLA is not high (several 1,000s), but it possesses unordinary high glass transition temperature (as high as 120 °C). This is very different from existing aliphatic polyesters that usually have T gs lower than 60 °C. The high T g is attributed to the formation of inter- and/or intramolecular hydrogen bonds due to a characteristic keto–enol tautomerism equilibrium in the polymer structure. PHLA readily degraded hydrolytically in aqueous media.  相似文献   

6.
One of the major concerns of mining companies is the safety of their tailing dams. Among the cares required to operate such a dam, a proper treatment of the effluent composing its waste stands out, since that, waste must be treated before returned to the environment. In the process of bauxite beneficiation, the effluent level of turbidity is the discard parameter that deserves attention. In this work, quaternized chitosan (TMCCl?) derivative with cationic charge was synthetized and investigated to be used as coagulant in bauxite treatment for tailing dam effluent. The chitosan (CHT) was quaternized by methylation reaction. The quaternized chitosan structure was characterized by the following techniques: FTIR Spectroscopy and 1H nuclear magnetic resonance (NMR). Its thermal stability was analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis. After quaternized chitosan was obtained, analysis with aluminum sulfate, protonated and quaternized chitosan were executed in jar-test apparatus. The tests were conducted in order to find the optimum pH, velocity gradient, coagulant and alkalizer dosages, as well as coagulation, flocculation and decantation time. The studied coagulants showed good results and reduced the effluent turbidity to levels below determined by legislation. By comparing the coagulants, it was possible to state that quaternized chitosan presented higher reduction of effluent turbidity levels; the tests were performed in the same conditions.  相似文献   

7.
Blends of the bacterially produced polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with cellulose acetate esters (CAE) further substituted with propionyl or butyryl groups (degree of substitution: 2.60 propionyl and 0.36 acetyl or 2.59 butyryl and 0.36 acetyl, respectively) were exposed for 4 months to activated sludge to determine their biodegradability. Samples of such blends made by solution-mixing and solvent-casting had complex morphologies in which both individual components as well as a miscible blend phase were present. Additionally, the two opposite surfaces of solvent-cast films showed both physical and chemical differences. After 2 months, samples of pure PHBV had degraded by more than 98% (15 mg/cm2 of surface area), whereas a pure CAE sample had degraded less than 1% (<0.2 mg/cm2). Samples containing 25% CAE lost less than 40% of their initial weights (6 mg/cm2) over the total 4-month period. Samples with 50% CAE lost up to 16% weight (2 mg/cm2), whereas those containing 75% CAE lost only slightly more weight than corresponding sterile control samples (1 mg/cm2). NMR results confirm that weight loss from samples containing 25% CAE resulted only from degradation of PHBV and that the surface of samples became enriched in CAE. Solvent-cast film samples containing equal amounts of PHBV and CAE degraded preferentially on the surface which formed at the polymer-air interface. Scanning electron microscopy and attenuated total reflectance infrared spectroscopy revealed this surface to have a rougher texture and a greater PHBV content.  相似文献   

8.
The biodegradation behavior of PCL film with high molecular weight (80,000 Da) in presence of bacterium Alcaligenes faecalis and the analysis of degraded polymer film have been carried out. Thin Films of PCL were prepared by means of solution casting method and the bacterial degradation behavior was carried in basal medium, in presence of bacteria with time variation after UV treatment. It was observed that after UV treatment the degradation of polymer film was increased and the degradation rate followed a three steps degradation mechanism. The degraded polymer film was analyzed by means of Differential Scanning Calorimeter (DSC), Thermo Gravimetric Analyzer (TGA) and Fourier Transform Infrared Spectroscope (FTIR). DSC results revealed that at the initial stages of the degradation up to 15–20 days, the bacterium preferentially degrades the amorphous parts of the polymer film over the crystalline zone. Thermo gravimetric analysis highlighted the low temperature stability of degraded films with extent of degradation. FTIR results showed the chain scission mechanism of the polymer chains and also supported the preferential degradation of amorphous phase over crystalline phase in the initial stages of the degradation.  相似文献   

9.
In the present work the photo-degradation of polychloroprene (PCP) in toluene solution catalyzed by FeCl3·6H2O and polychromatic light was investigated based on FTIR and 13C NMR spectroscopies, on conductivity measurements and DSC technique. The band in the 1700–1790 cm−1 range in the FTIR spectrum characterized the presence of carbonyl products due to the degradation of the PCP on the solution exposed to polychromatic light. The formation of carbonyl on degraded PCP was confirmed by the presence of signal on 13C NMR at δ 203.5. Products of PCP degradation, such as acid chlorides, generated in the toluene solution migrate to the aqueous phase (in contact with toluene phase) and the conductivity of aqueous phase increased as the time is elapsed. The area related to the PCP melting-peak on the DSC (film casted after the PCP-FeCl3·6H2O toluene solution has been exposed to polychromatic light) significantly decreased in comparison to that in the DSC of the raw PCP cast film.  相似文献   

10.
Biodegradable copoly(amino acid)s based on 6-aminocaproic acid and l-leucine were prepared by melt condensation polymerization and characterized by Fourier transform infrared spectrometry (FTIR), proton nuclear magnetic resonance spectrometry (1H NMR), and X-ray diffraction (XRD). The intrinsic viscosity and the density of the copoly(amino acid)s were measured. Thermal properties of the copoly(amino acid)s were performed by differential scanning calorimetry (DSC). Results showed that by increasing leucine content of the comonomers, the intrinsic viscosity, melting point, and melting enthalpy of copoly(amino acid)s decrease while the density increases. The enzymatic degradation of the polymers films was tested using papain; results showed that the copoly(amino acid)s are degradable and the enzymatic degradation rate increases with increasing leucine content in the comonomers.  相似文献   

11.
Cultivation conditions affecting poly(vinyl alcohol) (PVA) degradation by a mixed bacterial culture of Bacillus sp. and Curtobacterium sp. were investigated. Bacterial strains used in this study were isolated from the watercourse and the sewage sludge of vinylonfibre mill by enrichments on PVA as the sole carbon source. The results showed that PVA was greatly degraded under the following conditions: 0.5% PVA as a substrate at the initial medium pH of 8 with 0.15% glucose and urea at C/U ratio 1.5:1 and 1% bacterial inoculum, at a temperature of 35 °C and a shaking speed of 110 rpm. The analysis of FTIR and 1H NMR spectra before and after biodegradation indicate fission of the PVA molecular chain during the incubation.  相似文献   

12.
N-(Methylphenylmethylidenyl) chitosan (MPMC) polymer was synthesized by chemical modification of chitosan. The chemical structure of the modified polymer was characterized by IR, 1H NMR and elemental analysis. Thermogravimetric reveals that the thermal stability of chitosan polymer is greater than MPMC polymer. The activation energies of thermal degradation of chitosan and MPMC polymers determined using Arrhenius relationship. Thermal degradation of MPMC polymer was studied and the products of degradation were identified by GC–MS technique. It seems that the mechanism of degradation of MPMC polymer is characterized by elimination of low-molecular weight radicals. Combination or recombination of H· or OH with these radicals and random scission mechanism along the backbone chain are the main source of the degradation products.  相似文献   

13.
A poly(lactic acid) (PLA)/polyamide 11 (PA11)/SiO2 composite was mixed from PLA, PA11, and nanosilica particles through twin-screw extrusion. The PLA/PA11/SiO2 composite was evaluated with tensile and Izod impact tests, light transmission and haze measurement, and isothermal and nonisothermal crystallization behavior determinations. The PLA/PA11/SiO2 (97.0/3.0) composite had approximately 10.8% less ultimate tensile strength than neat PLA, but it had greater ductility and approximately ninefold greater elongation at break. A dimple morphology was observed on the fractural surface of the PLA/PA11/SiO2 composite, indicating that the incorporation of PA11 and nanosilica particles increased the ductility of the PLA matrix. PLA with less than 3 wt% of PA11 and 0.5 phr of nanosilica particles had an Izod impact strength of 8.72 kJ/m2. PA11 and nanosilica particles effectively toughened this PLA polymer; they accelerated both isothermal and nonisothermal crystallization rates and increased the crystallinities of the resulting composites under isothermal and nonisothermal crystallization processes.  相似文献   

14.
The development of synthetic biodegradable polymers using solvent free polymerization has a unique potential to be used as sustainable polymers in biomedical applications. The aim of this work was to synthesize and characterize a sustainable class of poly(lactic acid) (PLA) under different operating conditions via direct polycondensation of lactic acid (LA). Several parameters were tested including the absence of solvents and catalysts on the polymerization, in addition to polymerization temperature and time. Polymerization conditions were evaluated using response surface method (RSM) to optimize the impact of temperature, time, and catalyst. Results showed that molecular weight (Mw) of PLA increased with increasing polymerization time. Highest Mw of 28.4 kD with relatively a broad polydispersity 1.9 was achieved at polymerization temperature 170?°C at 24 h in the free solvent polymerization. This led to a relevant inherent viscosity of 0.37 dl/g. FTIR spectra exhibited a disappearance of the characteristic peak of the hydroxyl group in LA at 3482 cm?1 by increasing the intensity of carbonyl group. The 1H nuclear magnetic resonance (NMR) exhibited the main chain at 5.22 ppm and the signal of methyl proton at 1.61 ppm as well as a signal at 4.33 and 1.5 assigned to the methane proton next to the terminal hydroxyl group and carboxyl group respectively. Meanwhile, the PLA synthesized with a catalyst [Sn(Oct)2] in a free solvent demonstrated comparatively high thermal transition properties of glass transition, melting, and crystallinity temperatures of 48, 106, and 158?°C, respectively. These results are of significant interest to further expand the use of PLA in biomedical applications.  相似文献   

15.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

16.
In this study, the biodegradation of PLA films using microorganisms from Lake Bogoria (Kenya) were investigated. The biodegradation tests done using certain strains of thermophilic bacteria showed faster biodegradation rates and demonstrated temperature dependency. The biodegradation of the PLA films was studied using Gel Permeation Chromatography (GPC) and light microscopy. The biodegradation of PLA was demonstrated by decrease in molecular weight. The preparation and characterization of PLA/Gum Arabic blends were also investigated using DSC, TGA, TMA and NMR. In summary, the results obtained in this research show that PLA films undergo fast biodegradation using thermophiles isolated from Lake Bogoria. The PLA/GA blends studies show it is possible to prepare films of varying hydrophobic–hydrophilic properties for various applications.  相似文献   

17.
This work validated a burial protocol for in situ testing and presents a robust, repeatable and time-saving technique to measure degraded areas in the sample, i.e. an image analysis method. 1440 specimens of degraded samples have been compiled in a data base. To this end, twenty samples presenting different levels of biodegradability (i.e. PHBV/HV, PLA, PCL, PCL-Starch, paper, PE, PE-Starch) were buried at 4 different locations and then disinterred at 4, 6, 9, 12, 18, and 24-month intervals. The biodegradation levels of these samples were determined by computing weight and area loss. Weight loss was measured after careful cleaning, whereas area loss was quantified using image analysis. Image analysis gives reliable information on visual pollution while only requiring a rudimentary and thus quicker cleaning of the samples.  相似文献   

18.
This work assessed biodegradation, by Aspergillus, Fusarium, Penicillium and Parengyodontium fungi, of four samples of poly-ε-caprolactone (PCL), three samples of poly-l-lactide (PLA) and one sample of poly-d,l-lactide (DL-PLA) produced by ring-opening polymerization initiated by aluminium complexes of corresponding lactones. Mesophilic fungal strains actively biodegrading PCL (F. solani) and PLA (Parengyodontium album and A. calidoustus) were selected. The rate of degradation by the selected fungi was found to depend on the physicochemical and mechanical properties of the polymers (molecular weight, polydispersity, crystallinity). The most degradable poly-ε-caprolactone sample was shown to have the lowest molecular weight; the most biodegradable polylactide DL-PLA had the lowest crystallinity. Mass spectral analysis of biodegraded polymer residues showed PCL to be degraded more intensively than PLA. It is established that in the case of Parengyodontium album the colonization of the films of polypropylene composites with DL-PLA is observed, which will undoubtedly contribute to their further destruction under the influence of abiotic factors in the environment.  相似文献   

19.
Poly(dl-lactic acid) or PLA is a biodegradable polymer. It has received much attention since it plays an important role in resolving the global warming problem. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported as having PLA depolymerase potential and being applicable to PLA biodegradation, which was used in this work. Therefore, this research demonstrates the important basic knowledge on the biological degradation process by the crude PLA-degrading enzyme from strain T16-1. Its re-polymerization was evaluated. The optimization of PLA degradation by statistical methods based on central composite design was determined. Approximately 6700 mg/l PLA powder was degraded by the crude enzyme under optimized conditions: an initial enzyme activity of 200 U/ml, incubated at 60 °C for 24 h released 6843 mg/l lactic acid with 82% conversion, which was similar to the commercial enzyme proteinase K (81%). The degradable products were re-polymerized repeatedly by using commercial lipase as a catalyst under a nitrogen atmosphere for 6 h. A PLA oligomer was achieved with a molecular weight of 378 Da (n = 5). This is the first report to demonstrate the high efficiency of the enzyme to degrade 100% of PLA powder and to show the biological recycling process of PLA, which is promising for the treatment and utilization of biodegradable plastic wastes in the future.  相似文献   

20.
A respirometric system was used to analyze the biodegradation of high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films in soil under laboratory conditions. The respirometric system consisted of air-conditioning pretraps, a soil reactor, and a carbon dioxide (CO2) posttrap. A 200-g homogeneous soil mixture of all-purpose potting soil : manure soil : sand [1 : 1 : 1 (w/w)] and 1.5 g of PLA plastic films in 1 × 1-cm2 squares was added to each bottle. The respirometers were placed in a 28, 40, or 55°C water bath for 182 days. Treatments (three replicates) included native corn starch (positive control), polyethylene (Glad Cling Wrap; negative control), and three PLA films: Ca-I (Cargill Dow Polymers LLC, monolayer), GII (Cargill Dow Polymers LLC, Generation II), and Ch-I (Chronopol; monolayer). The degree of polymer mineralization was indicated by the cumulative CO2 liberated from each respirometer. The initial average mineralization rate and total percentage mineralized of the PLA plastic films at 28, 40, and 55°C was 24.3, 41.5, and 76.9 mg/day with a 27, 45, and 70% carbon loss, respectively. No decrease in soil pH was observed after 182 days of mineralization. Hence, increase in soil temperature drastically enhanced the biodegradation of PLA plastic films in soil under laboratory conditions (P < 0.0001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号