首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonia (NH3) is ubiquitous in the atmosphere, it can affect the formation of secondary aerosols and particulate matter, and cause soil eutrophication through sedimentation. Currently, the use of radioactive primary reagent ion source and the humidity interference on the sensitivity and stability are the two major issues faced by chemical ionization mass spectrometer (CIMS) in the analysis of atmospheric ammonia. In this work, a vacuum ultraviolet (VUV) Kr lamp was used to replace the radioactive source, and acetone was ionized under atmospheric pressure to obtain protonated acetone reagent ions to ionize ammonia. The ionization source is designed as a separated three-zone structure, and even 90 vol.% high-humidity samples can still be directly analyzed with a sensitivity of sub-ppbv. A signal normalization processing method was designed, and with this new method, the quantitative relative standard deviation (RSD) of the instrument was decreased from 17.5% to 9.1%, and the coefficient of determination was increased from 0.8340 to 0.9856. The humidity correction parameters of the instrument were calculated from different humidity, and the ammonia concentrations obtained under different humidity were converted to its concentration under zero humidity condition with these correction parameters. The analytical time for a single sample is only 60 sec, and the limit of detection (LOD) was 8.59 pptv (signal-to-noise ratio S/N = 3). The ambient measurement made in Qingdao, China, in January 2021 with this newly designed CIMS, showed that the concentration of ammonia ranged from 1 to 130 ppbv.  相似文献   

2.
Traffic is a main source of air pollutants in urban areas and consequently daily peak exposures tend to occur during commuting. Personal exposure to particulate matter (PM) was monitored while cycling and travelling by bus, car and metro along an assigned route in Lisbon (Portugal), focusing on PM2.5 and PM10 (PM with aerodynamic diameter <2.5 and 10 µm, respectively) mass concentrations and their chemical composition. In vehicles, the indoor-outdoor interplay was also evaluated. The PM2.5 mean concentrations were 28?±?5, 31?±?9, 34?±?9 and 38?±?21?µg/m3 for bus, bicycle, car and metro modes, respectively. Black carbon concentrations when travelling by car were 1.4 to 2.0 times higher than in the other transport modes due to the closer proximity to exhaust emissions. There are marked differences in PM chemical composition depending on transport mode. In particular, Fe was the most abundant component of metro PM, derived from abrasion of rail-wheel-brake interfaces. Enhanced concentrations of Zn and Cu in cars and buses were related with brake and tyre wear particles, which can penetrate into the vehicles. In the motorised transport modes, Fe, Zn, Cu, Ni and K were correlated, evidencing their common traffic-related source. On average, the highest inhaled dose of PM2.5 was observed while cycling (55 µg), and the lowest in car travels (17 µg). Cyclists inhaled higher doses of PM2.5 due to both higher inhalation rates and longer journey times, with a clear enrichment in mineral elements. The presented results evidence the importance of considering the transport mode in exposure assessment studies.  相似文献   

3.
Simulation of fine particulate matter (PM2.5) exposure is essential for evaluating adverse health effects. In this work, an ambient exposure system that mimicked real atmospheric conditions was installed in Taiyuan, China to study impacts of chronic PM2.5 exposure on adult and aged mice as well as Sirtuin3 knockout (Sirt3 KO) mice and wild-type (WT) mice. The real-ambient exposure system eliminated the possible artificial effects caused from exposure experiments and maintained the physiochemical characteristics of PM2.5. The case studies indicated that aged mice exhibited apparent heart dysfunction involving increased heart rate and decreased blood pressure after 17-week of real-ambient PM2.5 exposure. Meanwhile, 15-week of real-ambient PM2.5 exposure decreased the heart rate and amounts of associated catecholamines to induce heart failure in Sirt3 KO mice. Additionally, the increased pro-inflammatory cytokines and decreased platelet related indices suggested that inflammation occurred. The changes of biomarkers detected by targeted metabolomics confirmed metabolic disorder in WT and Sirt3 KO mice after exposed to real-ambient PM2.5. These results indicated that the real-ambient PM2.5 exposure system could evaluate the risks of certain diseases associated with air pollution and have great potential for supporting the investigations of PM2.5 effects on other types of rodent models.  相似文献   

4.
Particulate matter (i.e., PM1.0 and PM2.5), considered as the key atmospheric pollutants, exerts negative effects on visibility, global climate, and human health by associated chemical compositions. However, our understanding of PM and its chemical compositions in Beijing under the current atmospheric environment is still not complete after witnessing marked alleviation during 2013–2017. Continuous measurements can be crucial for further air quality improvement by better characterizing PM pollution and chemical compositions in Beijing. Here, we conducted simultaneous measurements on PM in Beijing during 2018–2019. Results indicate that annual mean PM1.0 and PM2.5 concentrations were 35.49 ± 18.61 µg/m3 and 66.58 ± 60.17 µg/m3, showing a positive response to emission controls. The contribution of sulfate, nitrate, and ammonium (SNA) played an enhanced role with elevated PM loading and acted as the main contributors to pollution episodes. Discrepancies observed among chemical species between PM1.0 and PM2.5 in spring suggest that sand particles trend to accumulate in the range of 1–2.5 µm. Pollution episodes occurred accompanied with southerly clusters and high formation of SNA by heterogeneous reactions in summer and winter, respectively. Results from positive matrix factorization (PMF) combined with potential source contribution function (PSCF) models showed that potential areas were seasonal dependent, secondary and vehicular sources became much more important compared with previous studies in Beijing. Our study presented a continuous investigation on PM and sources origins in Beijing, which provides a better understanding for further emission control as well as a reference for other cities in developing countries.  相似文献   

5.
To control the spread of COVID-19, rigorous restrictions have been implemented in China, resulting in a great reduction in pollutant emissions. In this study, we evaluated the air quality in the Yangtze River Delta during the COVID-19 lockdown period using satellite and ground-based data, including particle matter (PM), trace gases, water-soluble ions (WSIs) and black carbon (BC). We found that the impacts of lockdown policy on air quality cannot be accurately assessed using MODIS aerosol optical depth (AOD) data, whereas the tropospheric nitrogen dioxide (NO2) vertical column density can well reflect the influences of these restrictions on human activities. Compared to the pre-COVID period, the PM2.5, PM10, NO2, carbon monoxide (CO), BC and WSIs during the lockdown in Suzhou were observed to decrease by 37.2%, 38.3%, 64.5%, 26.1%, 53.3% and 58.6%, respectively, while the sulfur dioxide (SO2) and ozone (O3) increased by 1.5% and 104.7%. The WSIs ranked in the order of NO3? > NH4+ > SO42- > Cl? > Ca2+ > K+ > Mg2+ > Na+ during the lockdown period. By comparisons with the ion concentrations during the pre-COVID period, we found that the ions NO3?, NH4+, SO42?, Cl?, Ca2+, K+ and Na+ decreased by 66.3%, 48.8%, 52.9%, 56.9%, 57.9% and 76.3%, respectively, during the lockdown, in contrast to Mg2+, which increased by 30.2%. The lockdown policy was found to have great impacts on the diurnal variations of Cl?, SO42?, Na+ and Ca2+.  相似文献   

6.
Luoyang is a typical heavy industrial city in China, with a coal-dominated energy structure and serious air pollution. Following the implementation of the clean air actions, the physicochemical characteristics and sources of PM2.5 have changed. A comprehensive study of PM2.5 was conducted from October 16, 2019 to January 23, 2020 to evaluate the effectiveness of previous control measures and further to provide theory basis for more effective policies in the future. Results showed that the aerosol pollution in Luoyang in autumn and winter is still serious with the average concentration of 91.1 μg/m3, although a large reduction (46.9%) since 2014. With the contribution of nitrate increased from 12.5% to 25.1% and sulfate decreased from 16.7% to 11.2%, aerosol pollution has changed from sulfate-dominate to nitrate-dominate. High NO3/SO42− ratio and the increasing of NO3/SO42− ratio with the aggravation of pollution indicating vehicle exhaust playing an increasingly important role in PM2.5 pollution in Luoyang, especially in the haze processes. Secondary inorganic ions contributed significantly to the enhancement of PM2.5 during the pollution period. The high value of Cl/Na+ and EC concentration indicate coal combustion in Luoyang is still serious. The top three contributor sources were secondary inorganic aerosols (33.3%), coal combustion (13.6%), and industrial emissions (13.4%). Close-range transport from the western and northeastern directions were more important factors in air pollution in Luoyang during the sampling period. It is necessary to strengthen the control of coal combustion and reduce vehicle emissions in future policies.  相似文献   

7.
Atmospheric nanoparticles are crucial components contributing to fine particulate matter(PM2.5), and therefore have significant effects on visibility, climate, and human health. Due to the unique role of atmospheric nanoparticles during the evolution process from gas-phase molecules to larger particles, a number of sophisticated experimental techniques have been developed and employed for online monitoring and characterization of the physical and chemical properties of atmospheric nanoparticles,...  相似文献   

8.
In order to study the concentrations of major components,characteristics and comparison in hazy and non-hazy days of PM10 in Beijing,aerosol samples were collected at urban site in Beijing from December 29,2014 to January 22,2015.Heavy metals like Zn,Pb,Mn,Cu,As,V,Cr and Cd were deeply studied considering their toxic effects on human being;nine water-soluble inorganic ions(SO42-,NO3-,NH4+,Na+,K+,Cl...  相似文献   

9.
Particulate matter (PM) pollution in high emission regions will affect air quality, human health and climate change on both local and regional scales, and thus attract worldwide attention. In this study, a comprehensive study on PM2.5 and its chemical composition were performed in Yuncheng (the most polluted city of Fen-Wei Plain of China) from November 28, 2020 to January 24, 2021. The average concentration of PM2.5 was 87.8 ± 52.0 μg/m3, which were apparently lower than those observed during the same periods of past five years, attributable to the clean air action plan implemented in this region. NO3 and organic carbon (OC) were the dominant particulate components, which on average contributed 22.6% and 16.5% to PM2.5, respectively. The fractions of NO3, NH4+, OC and trace metals increased while those of crustal materials and elemental carbon decreased with the degradation of PM2.5 pollution. Six types of PM2.5 sources were identified by the PMF model, including secondary inorganic aerosol (35.3%), coal combustion (28.7%), vehicular emission (20.7%), electroplating industry (8.6%), smelt industry (3.9%) and dust (2.8%). Locations of each identified source were pinpointed based on conditional probability function, potential source contribution function and concentration weighted trajectory, which showed that the geographical distribution of the sources of PM2.5 roughly agreed with the areas of high emission. Overall, this study provides valuable information on atmospheric pollution and deems beneficial for policymakers to take informed action to sustainably improve air quality in highly polluted region.  相似文献   

10.
Swimming pools adopt chlorination to ensure microbial safety. Giardia has attracted attention in swimming pool water because of its occurrence, pathogenicity, and chlorine resistance. To control Giardia concentrations in pool water and reduce the microbial risk, higher chlorine doses are required during disinfection. Unfortunately, this process produces carcinogenic disinfection byproducts that increase the risk of chemical exposure. Therefore, quantitatively evaluating the comparative microbial...  相似文献   

11.
Particulate matter (PM2.5) samples were collected in the vicinity of an industrial chemical pole and analysed for organic and elemental carbon (OC and EC), 47 trace elements and around 150 organic constituents. On average, OC and EC accounted for 25.2% and 11.4% of the PM2.5 mass, respectively. Organic compounds comprised polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, anhydrosugars, phenolics, aromatic ketones, glycerol derivatives, aliphatic alcohols, sterols, and carboxyl groups, including aromatic, carboxylic and dicarboxylic acids. Enrichment factors > 100 were obtained for Pb, Cd, Zn, Cu, Sn, B, Se, Bi, Sb and Mo, showing the contribution of industrial emissions and nearby major roads. Principal component analysis revealed that vehicle, industrial and biomass burning emissions accounted for 66%, 11% and 9%, respectively, of the total PM2.5-bound PAHs. Some of the detected organic constituents are likely associated with plasticiser ingredients and thermal stabilisers used in the manufacture of PVC and other plastics in the industrial complex. Photooxidation products of both anthropogenic (e.g., toluene) and biogenic (e.g., isoprene and pinenes) precursors were also observed. It was estimated that biomass burning accounted for 13.8% of the PM2.5 concentrations and that secondary OC represented 37.6% of the total OC. The lifetime cancer risk from inhalation exposure to PM2.5-bound PAHs was found to be negligible, but it exceeded the threshold of 10−6 for metal(loi)s, mainly due to Cr and As.  相似文献   

12.
In this study, a photocatalytic material consisting of ZnO and yttrium-doped ZnO (YZO) nanoparticles was obtained via a facile precipitation conducted under ambient pressure whereby crystalline ZnO was successfully doped with yttrium. YZO had a hexagonal wurtzite polycrystalline structure with smaller crystal and grain sizes than ZnO, which in turn meant larger specific surface area and pore volume. Chemical defects were also produced, which facilitated photocatalytic activity, because such defects can act as reaction centers. The optical band gap magnitude and the diamagnetic nature of YZO were also determined. The structural, crystalline, and chemical defects of YZO synergistically enhanced the photocatalytic degradation of carbaryl; indeed, the kinetic rate constant of this reaction catalyzed by YZO was 11.17 × 10−2 min−1 under natural sunlight irradiation, higher than the value measured for ZnO (8.68 × 10−2 min−1). Evidence thus indicates that yttrium-doping effectively modified some properties of ZnO nanoparticles so that YZO nanoparticles proved a suitable photocatalytic material for carbaryl degradation.  相似文献   

13.
Although marine and terrestrial emissions simultaneously affect the formation of atmospheric fine particles in coastal areas, knowledge on the optical properties and sources of water-soluble matter in these areas is still scarce. In this work, taking Qingdao, China as a typical coastal location, the chemical composition of PM2.5 during winter 2019 was analyzed.Excitation-emission matrix fluorescence spectroscopy was combined with parallel factor analysis model to explain the component...  相似文献   

14.
The distribution and chemical speciation of arsenic (As) in different sized atmospheric particulate matters (PMs), including total suspended particles (TSP), PM10, and PM2.5, collected from Baoding, China were analyzed. The average total mass concentrations of As in TSP, PM10, and PM2.5 were 31.5, 35.3, and 54.1 µg/g, respectively, with an order of PM2.5 >PM 10 > TSP, revealing that As is prone to accumulate on fine particles. Due to the divergent toxicities of different As species, speciation analysis of As in PMs is further conducted. Most of previous studies mainly focused on inorganic arsenite (iAsIII), inorganic arsenate (iAsV), monomethylarsonate (MMA), and dimethylarsinate (DMA) in PMs, while the identification and sensitive quantification of trimethylarsine oxide (TMAO) were rarely reported. In this study, a high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry system was optimized for As speciation including TMAO in PMs. An anion exchange column was used to separate MMA, DMA and iAsV, while a cation exchange column to separate TMAO and iAsIII. Results showed that iAsV was the dominate component in all the samples, corresponding to a portion of 79.2% ± 9.3% of the total extractable species, while iAsIII, TMAO and DMA made up the remaining 21%. Our study demonstrated that iAsIII accounted for about 14.4% ± 11.4% of the total extracted species, with an average concentration of 1.7 ± 1.6 ng/m3. It is worth noting that TMAO was widely present in the samples (84 out of 97 samples), which supported the assumption that TMAO was ubiquitous in atmospheric particles.  相似文献   

15.
A rapid reaction occurs near the exhaust nozzle when vehicle emissions contact the air. Twenty diesel vehicles were studied using a new multipoint sampling system that is suitable for studying the exhaust plume near the exhaust nozzle. The variation characteristics of fine particle matter (PM2.5) and its components in diesel vehicle exhaust plumes were analyzed. The PM2.5 emissions gradually increased with increasing distance from the nozzle in the plume. Elemental carbon emissions remained basically unchanged, organic carbon and total carbon (TC) increased with increasing distance. The concentrations of SO42?, NO3? and NH4+ (SNA) directly emitted by the vehicles were very low but increased rapidly in the exhaust plume. The selective catalytic reduction (SCR) reduced 42.7% TC, 40% NO3? emissions, but increased 104% SO42? and 36% NH4+ emissions, respectively. In summary, the SCR reduced 29% primary PM2.5 emissions for the tested diesel vehicles. The NH4NO3 particle formation maybe more important in the plume, and there maybe other forms of formation of NH4+ (eg. NH4Cl). The generation of secondary organic carbon (SOC) plays a leading role in the generation of secondary PM2.5. The SCR enhanced the formation of SOC and SNA in the plume, but comprehensive analysis shows that the SCR more enhanced the SNA formation in the plume, which is mainly new particles formation process. The inconsistency between secondary organic aerosol (SOA) and primary organic aerosol definitions is one of the important reasons for the difference between SOA simulation and observation.  相似文献   

16.
This study evaluated the release characteristics of mercury from bituminous coal in chemical looping combustion (CLC) using Australian iron ore as the oxygen carrier in a fixed bed reactor. The effects of several parameters, such as temperature in the fuel reactor (FR) and air reactor (AR), gasification medium in the FR, and reaction atmosphere in the AR, on mercury release characteristics, were investigated. The mercury speciation and release amount in the FR and AR under different conditions were further explored. The results indicate that most of the mercury in coal was released in the FR, while the rest of it was released in the AR. Hg0 was found to be the major species in the released mercury. The results also indicate that a higher temperature in the FR led to an increase in the total mercury release amount and a decrease in Hg0 proportion. However, a higher temperature in the AR resulted in a decrease in the total mercury release amount and Hg0 proportion. The increase in the H2O/CO2 ratio of gasification mediums in the FR was beneficial for the increase in the total mercury release amount and Hg0 proportion. A higher O2 concentration in reaction atmosphere in AR had a negligible effect on the total mercury release amount, but a positive effect on Hg0 oxidization.  相似文献   

17.
The real-time detection of the mixing states of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in ambient particles is of great significance for analyzing the source, aging process, and health effects of PAHs and nitro-PAHs; yet there is still few effective technology to achieve this type of detection. In this study, 11 types of PAH and nitro-PAH standard samples were analyzed using a high performance-single particle aerosol mass spectrometer (HP-SPAMS) in lab studies. The identification principles ‘parent ions’ and ‘mass-to-charge (m/z) = 77’ of each compound were obtained in this study. It was found that different laser energies did not affect the identification of the parent ions. The comparative experiments of ambient atmospheric particles, cooking and biomass burning emitted particles with and without the addition of PAHs were conducted and ruled out the interferences from primary and secondary organics on the identification of PAHs. Besides, the reliability of the characteristic ions extraction method was evaluated through the comparative study of similarity algorithm and deep learning algorithm. In addition, the real PAH-containing particles from vehicle exhaust emissions and ambient particles were also analyzed. This study improves the ability of single particle mass spectrometry technology to detect PAHs and nitro-PAHs, and HP-SPAMS was superior to SPAMS for detecting single particles containing PAHs and nitro-PAHs. This study provides support for subsequent ambient observations to identify the characteristic spectrum of single particles containing PAHs and nitro-PAHs.  相似文献   

18.
Dissolved organic matter (DOM) plays a major role in ecological systems and influences the fate and transportation of many pollutants. Despite the significance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited, especially in urban stormwater runoff. In this article, the chemical properties (pollutant loads, molecular weight, aromaticity, sources, and molecular composition) of DOM in stormwater extracted from three typical end-members (traffic, residential, and campus regions) were characterized by UV–visible (UV–vis) spectroscopy, excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC), and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). There are three findings: (1) The basic properties of DOM in stormwater runoff varied obviously from three urban fields, and the effect of initial flush was also apparent. (2) The DOM in residential areas mainly came from autochthonous sources, while allochthonous sources primarily contributed to the DOM in traffic and campus areas. However, it was mainly composed of terrestrial humic-like components with CHO and CHON element composition and HULO and aliphatic formulas. (3) The parameters characterizing DOM were primarily related to terrestrial source and aromaticity, but their correlations varied. Through the combination of optical methods and UPLC-Q-TOF spectrometry, the optical and molecular characteristics of rainwater are effectively revealed, which may provide a solid foundation for the classification management of stormwater runoff in different urban regions.  相似文献   

19.
This work assessed the impact of fuelling an automotive engine with palm biodiesel (pure, and two blends of 10% and 20% with diesel, B100, B10 and B20, respectively) operating under representative urban driving conditions on 17 priority polycyclic aromatic hydrocarbon (PAH) compounds, oxidative potential of ascorbic acid (OPAA), and ecotoxicity through Daphnia pulex mortality test. PM diluted with filtered fresh air (WD) gathered in a minitunel, and particulate matter (PM) collected directly from the exhaust gas stream (W/oD) were used for comparison. Results showed that PM collecting method significantly impact PAH concentration. Although all PAH appeared in both, WD and W/oD, higher concentrations were obtained in the last case. Increasing biodiesel concentration in the fuel blend decreased all PAH compounds, and those with 3 and 5 aromatic rings were the most abundant. Palm biodiesel affected both OPAA and ecotoxicity. While B10 and B20 exhibited the same rate of ascorbic acid (AA) depletion, B100 showed significant faster oxidation rate during the first four minutes and oxidized 10% more AA at the end of the test. B100 and B20 were significantly more ecotoxic than B10. The lethal concentration LC50 for B10 was 6.13 mg/L. It was concluded that palm biodiesel decreased PAH compounds, but increased the oxidative potential and ecotoxicity.  相似文献   

20.
The health effects of trace metal elements in atmospheric fine particulate matter (PM2.5) are widely recognized, however, the emission factor profiles and chemical fractionation of metal elements in different sources were poorly understand. In this study, sixteen metal elements, including Cd, Pb, V, Zn, Ba, Sb, As, Fe, Sr, Cr, Rb, Co, Mn, Cu, Ni and Sn from biomass burning, bituminite and anthracite combustion, as well as dust, were quantified. The results show different emission sources were associated with distinct emission profiles, holding important implications for source apportionment of ambient particulate metals. Specifically, Fe was the dominant metal species (28-1922 mg/kg) for all samples, and was followed by different metals for different samples. For dust, Mn (39.9 mg/kgdust) had the second-highest emission factor, while for biomass burning, it was Cr and Ba (7.5 and 7.4 mg/kgbiomass, respectively). For bituminous coal combustion, the emission factor of Zn and Ba was 6.2 and 6.0 mg/kgbituminous, respectively, while for anthracite combustion the corresponding emission factor was 5.6 and 4.3 mg/kganthracite, respectively. Moreover, chemical fractionation (i.e., the exchangeable, reducible fraction, oxidizable, and residual fraction) and the bioavailability index (BI) values of the metal elements from different sources were further investigated to reveal the link between different emission sources and the potential health risk. The findings from this study hold important implications for source apportionment and source-specific particulate metal-associated health effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号