首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
While the transformation of antimony(Sb) in paddy soil has been previously investigated, the biogeochemical processes of highly chemical active Sb in the soil remain poorly understood. In addition, there is a lack of quantitative understanding of Sb transformation in soil. Therefore, in this study, the kinetics of exogenous Sb in paddy soils were investigated under anaerobic and aerobic incubation conditions. The dissolved Sb(V) and the Sb(V) extracted by diffusive gradient technique decreased u...  相似文献   

2.
Biodegradation mechanisms and microbial functional diversity during coupled p-nitrophenol (PNP) and p-aminophenol (PAP) degradation were studied in a bioelectrochemical system. PNP in the biocathode and PAP in the bioanode were almost completely removed within 28hr and 68hr respectively. The degradation followed the steps including hydrating hydroxyalkylation, dehydrogenating carbonylation, and hydrolating ring cleavage, etc. Metagemomic analysis based on the KEGG and eggNOG database annotations revealed the microbial composition and functional genes/enzymes related to phenol degradation in the system. The predominant bacteria genera were Lautropia, Pandoraea, Thiobacillus, Ignavibacterium, Truepera and Hyphomicrobium. The recognized biodegradation genes/enzymes related to pollutant degradation were as follows: pmo, hbd, & ppo for phenol degradation, nzba, amie, & badh for aromatic degradation, and CYP & p450 for xenobiotics degradation, etc. The co-occurrence of ARGs (antibiotic resistant genes), such as adeF, MexJ, ErmF, PDC-93 and Escherichia_coli_mdfA, etc., were annotated in CARD database during the biodegradation process. The Proteobacteria & Actinobacteria phylum was the primary host of both the biodegradation genes & ARGs in this system. The microbial functional diversity ensured the effective biodegradation of the phenol pollutants in the bioelectrochemical system.  相似文献   

3.
The health effects of trace metal elements in atmospheric fine particulate matter (PM2.5) are widely recognized, however, the emission factor profiles and chemical fractionation of metal elements in different sources were poorly understand. In this study, sixteen metal elements, including Cd, Pb, V, Zn, Ba, Sb, As, Fe, Sr, Cr, Rb, Co, Mn, Cu, Ni and Sn from biomass burning, bituminite and anthracite combustion, as well as dust, were quantified. The results show different emission sources were associated with distinct emission profiles, holding important implications for source apportionment of ambient particulate metals. Specifically, Fe was the dominant metal species (28-1922 mg/kg) for all samples, and was followed by different metals for different samples. For dust, Mn (39.9 mg/kgdust) had the second-highest emission factor, while for biomass burning, it was Cr and Ba (7.5 and 7.4 mg/kgbiomass, respectively). For bituminous coal combustion, the emission factor of Zn and Ba was 6.2 and 6.0 mg/kgbituminous, respectively, while for anthracite combustion the corresponding emission factor was 5.6 and 4.3 mg/kganthracite, respectively. Moreover, chemical fractionation (i.e., the exchangeable, reducible fraction, oxidizable, and residual fraction) and the bioavailability index (BI) values of the metal elements from different sources were further investigated to reveal the link between different emission sources and the potential health risk. The findings from this study hold important implications for source apportionment and source-specific particulate metal-associated health effects.  相似文献   

4.
Aerobic granule is a special microbial aggregate associated with biofilm structure. The formation of aerobic granular sludge is primarily depending on its bacterial community and relevant microbiological properties. In this experiment, a strain with high microbial attachment was isolated from aerobic granular sludge, and the detailed characteristics were examined. Its high attachment ability could reach 2.34 (OD600nm), while other low attachment values were only around 0.06-0.32, which indicated a big variation among the different bacteria. The strain exhibited a very special morphology with many fibric fingers under SEM observation. A distinctive behaviour was to form a spherical particle by themselves, which would be very beneficial for the formation and development of granular sludge. The EPS measurement showed that its PN content was higher than low attachment bacteria, and 3D-EEM confirmed that there were some different components. Based on the 16S rRNA analysis, it was identified to mostly belong to Stenotrophomonas. Its augmentation to particle sludge cultivation demonstrated that the strain could significantly promote the formation of aerobic granule. Conclusively, it was strongly suggested that it might be used as a good and potential model strain or chassis organism for the aerobic granular sludge formation and development.  相似文献   

5.
Sb(Ⅲ) is often detected in contaminated soil and groundwater. Hence, high-efficiency technology is needed. In this study, bimetallic organic frameworks were used for the first time to immobilize Sb(Ⅲ) from contaminated soil and groundwater. The materials were synthesized by the hydrothermal method. Both ends of the prepared material were hexagonal tip rods,and the length became shorter as the ratio of Fe/Mg decreased. The bimetallic organic framework with a Fe/Mg feeding ratio of 0.5 was the opt...  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivates (O-PAHs) are identified in soils and groundwater of industrialized sites and contribute to the risk for Humans and the Environment. Nevertheless, data are scarce in literature concerning their retention and transfer in soils and no soil - water partition coefficients are available for these compounds. Sorption of two PAHs, fluorene and acenaphthene and two O-PAHs, 9H-fluorenone and dibenzofuran onto two soils with different organic carbon contents was evaluated and compared by determining their sorption isotherms. Effect of ionic strength and liquid to solid ratio, on fluorene and fluorenone sorption was also evaluated. Sorption equilibrium is achieved within less than 24 hr of mixing and linear sorption models best fit the isotherm data. Acenaphthene and dibenzofuran are similarly sorbed onto the soil. KD of fluorene is higher than the one of fluorenone, showing a smaller affinity of fluorenone towards the solid phase. This means that O-PAH could form larger contamination plumes in groundwater than PAHs. Decreasing the L/S ratio from 100 to 50 and 30, increases the sorption of fluorenone onto the soil by 56% and 67% respectively, while the sorption of fluorene is slightly increased. Increasing the ionic strength of the aqueous phase also modifies the sorption of fluorenone, contrary to the sorption of fluorene which is slightly affected.  相似文献   

7.
The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well.In this study,quantitative polymerase chain reaction (qPCR) and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structur...  相似文献   

8.
This study provided insights into the persistent yellowish color in biological and tertiary effluents of municipal wastewater through a multi-characterization approach and fluorescence excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis. The characterization was performed on three to five full-scale municipal wastewater treatment plants (WWTPs), including differential log-transformed absorbance (DLnA) spectroscopy, resin fractionation, size-exclusion chromatography for apparent molecular weight analysis (SEC-AMW), and X-ray photoelectron spectroscopy (XPS) analysis. Hydrophobic acids (HPOA) were abundant in visible colored dissolved organic matter (DOM). The SEC-AMW result showed that the molecular weight of the colored substances in the secondary effluents is mainly distributed in the range of 2–3 kDa. Through XPS analysis, C-O/C-N and pyrrolic/pyridonic (N-5) were found to be positively correlated with chroma. PARAFAC component models were built on biological (two components) and tertiary effluent (three components) and the correlation analysis revealed that PARAFAC component 2 in biological effluent (BE-C2) and component 1 in tertiary effluent (TE-C1), which were ascribed to Hydrophobic acids and Humic acid-like, were the responsible visible colored DOM components cause yellowish color. In addition, component similarity testing found that the identified visible colored DOM PARAFAC BE-C2, and PARAFAC TE-C1 were identical (0.96) in physicochemical properties, with 4% removal efficacy on average, compared with 11% for invisible colored DOM. This implied that tertiary effluents containing colorants (TE-C1) were resistant to degradation/removal using different disinfection and filtration processes in advanced treatments. This sheds light on many physicochemical aspects of PARAFAC-identified visible colored DOM components and provides spectral data to build an online monitoring system.  相似文献   

9.
As a typical class of emerging organic contaminants(EOCs), the environmental transformation and abatement of preservative parabens have raised certain environmental concerns. However, the remediation of parabens-contaminated water using natural matrixes(such as, naturally abundant minerals) is not reported extensively in literature. In this study, the transformation kinetics and the mechanism of ethylparaben using natural sphalerite(NS) were investigated. The results show that around 63% of ethy...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号