首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Knowledge of particle number size distribution(PND) and new particle formation(NPF)events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality,haze,and human health.In this study,seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer(SMPS) at four sites in Southern China,including three urban sites and one background site.Particles were measured in the size range of15-515 nm,and the median particle number concentrations(PNCs) were found to vary in the range of 0.3× 10~4-2.2 × 10~4 cn~(-3) at the urban sites and were approximately 0.2 × 10~4 cm~(-3) at the background site.The peak diameters at the different sites varied largely from 22 to 102 nm.The PNCs in the Aitken mode(25-100 nm) at the urban sites were up to 10 times higher than they were at the background site,indicating large primary emissions from traffic at the urban sites.The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events.The frequencies of NPF events at the different sites were0%-30%,with the highest frequency occurring at an urban site during autumn.With higher SO_2 concentrations and higher ambient temperatures being necessary,NPF at the urban site was found to be more influenced by atmospheric oxidizing capability,while NPF at the background site was limited by the condensation sink.This study provides a unique dataset of particle number and size information in various environments in Southern China,which can help understand the sources,formation,and the climate forcing of aerosols in this quickly developing region,as well as help constrain and validate NPF modeling.  相似文献   

2.
Single particle-inductively coupled plasma mass spectrometry (SP-ICP-MS) is a powerful tool for size-characterization of metal-containing nanoparticles (MCNs) at environmentally relevant concentrations, however, coexisting dissolved metal ions greatly interfere with the accuracy of particle size analysis. The purpose of this study is to develop an online technique that couples hollow fiber ultrafiltration (HFUF) with SP-ICP-MS to improve the accuracy and size detection limit of MCNs by removing metal ions from suspensions of MCNs. Through systematic optimization of conditions including the type and concentration of surfactant and complexing agent, carrier pH, and ion cleaning time, HFUF completely removes metal ions but retains the MCNs in suspension. The optimal conditions include using a mixture of 0.05 vol.% FL-70 and 0.5 mmol/L Na2S2O3 (pH = 8.0) as the carrier and 4 min as the ion cleaning time. At these conditions, HFUF-SP-ICP-MS accurately determines the sizes of MCNs, and the results agree with the size distribution determined by transmission electron microscopy, even when metal ions also are present in the sample. In addition, reducing the ionic background through HFUF also lowers the particle size detection limit with SP-ICP-MS (e.g., from 28.3 to 14.2 nm for gold nanoparticles). This size-based ion-removal principle provided by HFUF is suitable for both cations (e.g., Ag+) and anions (e.g., AuCl4) and thus has good versatility compared to ion exchange purification and promising prospects for the removal of salts and macromolecules before single particle analysis.  相似文献   

3.
Landfill sites are regarded as prominent sources of bioaerosols for the surrounding atmosphere. The present study focused on the emission of airborne bacteria and fungi in four seasons of a sanitary landfill site. The main species found in bioaerosols were assayed using high-throughput sequencing. The SourceTracker method was utilized to identify the sources of the bioaerosols present at the boundary of the landfill site. Furthermore, the health consequences of the exposure to bioaerosols were evaluated based on the average daily dose rates. Results showed that the concentrations of airborne bacteria in the operation area (OPA) and the leakage treatment area (LTA) were in the range of (4684 ± 477)–(10883 ± 1395) CFU/m3 and (3179 ± 453)–(9051 ± 738) CFU/m3, respectively. The average emission levels of fungal aerosols were 4026 CFU/m3 for OPA and 1295 CFU/m3 for LTA. The landfill site received the maximum bioaerosol load during summer and the minimum during winter. Approximately 41.39%– 86.24% of the airborne bacteria had a particle size of 1.1 to 4.7 µm, whereas 48.27%– 66.45% of the airborne fungi had a particle size of more than 4.7 µm. Bacillus sp., Brevibacillus sp., and Paenibacillus sp. were abundant in the bacterial population, whereas Penicillium sp. and Aspergillus sp. dominated the fungal population. Bioaerosols released from the working area and treatment of leachate were the two main sources that emerged in the surrounding air of the landfill site boundary. The exposure risks during summer and autumn were higher than those in spring and winter.  相似文献   

4.
More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and pH all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.  相似文献   

5.
聚硅氯化铝(PASC)混凝剂的颗粒大小及分子量分布   总被引:26,自引:0,他引:26  
采用共聚与复合两种制备工艺,研制出碱化度(B) 为2.0 的具有不同 Al/Si 摩尔比的聚硅氯化铝( 简称 PASC) 混凝剂.一种方法是将 NaCl加入到不同 Al/Si摩尔比的 AlCl36H2O和聚硅酸混合液中;另一种方法是按一定的Al/Si 摩尔比将聚硅酸加入到聚合氯化铝液中.应用光子相关光谱(PCS) 和超滤膜过滤方法对 PASC 及聚合氯化铝(PAC) 的颗粒大小及分子量分布进行对比测定.结果表明,在PASC中,由于聚硅酸与铝水解聚合产物间的相互作用,生成了聚集体更大的聚合物,显著提高了聚集体的粒径,这种提高以共聚法最为明显; Al/Si摩尔比影响PASC的聚集度,Al/Si摩尔比越小, PASC 的聚集度就越大.  相似文献   

6.
The distribution and sources of organochlorine pesticides (OCPs) in air and surface waters were monitored in Nairobi City using triolein-filled semipermeable membrane devices (SP-MDs).The SPMDs were extracted by dialysis using n-hexane,followed by cleanup by adsorption chromatography on silica gel cartridges.Sample analysis was done by GC-ECD and confirmed by GC–MS.Separation of means was achieved by analysis of variance,followed by pair-wise comparison using the t-test (p≤0.05).The total OCPs r...  相似文献   

7.
In this study, the effects of a diesel oxidation catalyst (DOC) coupled with a catalyzed diesel particulate filter (CDPF) with different catalyst loadings on the power, fuel consumption, gaseous and particulate emissions from a non-road diesel engine were investigated. Results showed that the after-treatment had a negligible effect on the power and fuel consumption. The reduction effect of the DOC on the CO and hydrocarbon (HC) increased with the engine load. Further reductions occurred coupling with the CDPF. Increasing the catalyst loading resulted in a more significant reduction in the HC emissions than CO emissions. The DOC could increase the NO2 proportion to 37.9%, and more NO2 was produced when coupled with the CDPF below 250°C; above 250°C, more NO2 was consumed. The after-treatment could reduce more than 99% of the particle number (PN) and 98% of the particle mass (PM). Further reductions in the PN and PM occurred with a higher CDPF catalyst loading. The DOC had a better reduction effect on the nucleation particles than the accumulation ones, but the trend reversed with the CDPF. The DOC shifted the particle size distribution (PSD) to larger particles with an accumulation particle proportion increasing from 13% to 20%, and the geometric mean diameter (GMD) increased from 18.2 to 26.0 nm. The trend reversed with the CDPF and the accumulation particle proportion declined to less than 10%. A lower catalyst loading on the CDPF led to a higher proportion of nucleation particles and a smaller GMD.  相似文献   

8.
The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF),which could be influenced by a variety of factors such as fuel properties,stove type,fire management and even methods used in measurements.The impacts of these factors are complicated and often interact with each other.Controlled burning experiments were conducted to investigate the influences of fuel mass load,air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) from indoor corn straw burning in a cooking stove.The results showed that the EFs of PM (EFPM),organic carbon (EFOC) and elemental carbon (EFEC) were independent of the fuel mass load.The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances.PM from the indoor corn straw burning was dominated by fine PM with diameter less than 2.1 μm,contributing 86.4%±3.9% of the total.The size distribution of PM was influenced by the burning rate and air supply conditions.On average,EF PM,EF OC and EF EC for corn straw burned in a residential cooking stove were (3.84±1.02),(0.846±0.895) and (0.391±0.350) g/kg,respectively.EF PM,EF OC and EF EC were found to be positively correlated with each other (p < 0.05),but they were not significantly correlated with the EF of co-emitted CO,suggesting that special attention should be paid to the use of CO as a surrogate for other incomplete combustion pollutants.  相似文献   

9.
Total contents of metals in soil and sediments on the Tibetan Plateau of China have been widely analyzed, but existing information is insufficient to effectively evaluate metal ecological risk because of a lack of metal bioavailability data. In this study, distribution, potential risk, mobility and bioavailability of metals in sediments of Lake Yamdrok Basin in Tibet of China were explored by combined use of total digestion, sequential extraction and the diffusive gradient in thin-films(DGT). Av...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号