首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This study profiled the bacterial community variations of water from four water treatment systems,including coagulation,sedimentation,sand filtration,ozonation-biological activated carbon filtration(O3-BAC),disinfection,and the tap water after the distribution process in eastern China.The results showed that different water treatment processes affected the bacterial community structure in different ways.The traditional treatment processes,including coagulation,sedimentation and sand f...  相似文献   

2.
Reservoirs have been served as the major source of drinking water for dozens of years. The water quality safety of large and medium reservoirs increasingly becomes the focus of public concern. Field test has proved that water-lifting and aeration system (WLAS) is a piece of effective equipment for in situ control and improvement of water quality. However, its intrinsic bioremediation mechanism, especially for nitrogen removal, still lacks in-depth investigation. Hence, the dynamic changes in water quality parameters, carbon source metabolism, species compositions and co-occurrence patterns of microbial communities were systematically studied in Jinpen Reservoir within a whole WLAS running cycle. The WLAS operation could efficiently reduce organic carbon (19.77%), nitrogen (21.55%) and phosphorus (65.60%), respectively. Biolog analysis revealed that the microbial metabolic capacities were enhanced via WLAS operation, especially in bottom water. High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water. The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas. Furthermore, network analysis revealed that microorganisms interacted more closely through WLAS operation. Oxidation-reduction potential (ORP) and total nitrogen (TN) were regarded as the two main physicochemical parameters influencing microbial community structures, as confirmed by redundancy analysis (RDA) and Mantel test. Overall, the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water.  相似文献   

3.
Within the drinking water distribution system (DWDS) using chloramine as disinfectant,nitrification caused by nitrifying bacteria is increasingly becoming a concern as it poses a great challenge for maintaining water quality.To investigate efficient control strategies,operational conditions including hydraulic regimes and disinfectant scenarios were controlled within a flow cell experimental facility.Two test phases were conducted to investigate the effects on the extent of nitrification of thre...  相似文献   

4.
The qualified finished water from water treatment plants (WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems (DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.  相似文献   

5.
Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe3O4 in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O3-biological activated carbon filtration-UV-Cl2 treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs.  相似文献   

6.
The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well.In this study,quantitative polymerase chain reaction (qPCR) and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structur...  相似文献   

7.
Four sampling campaigns were conducted in two years to understand the fluctuation of N-Nitrosamines(NAs) and their precursors in one drinking water treatment plant(DWTP) in East China in different seasons.This water supply system has been facing several nitrosamine challenges related with source water, including the switch of water source,high concentration of ammonium, formed NAs and NA formation potential(FP) in source water.Besides, the use of ozonation in the DWTP and chloramination in netwo...  相似文献   

8.
Urban villages are unique residential neighborhoods in urban areas in China. Roof tanks are their main form of water supply, and water quality deterioration might occur in this system because of poor hygienic conditions and maintenance. In this study, water samples were seasonally collected from an urban village to investigate the influence of roof tanks as an additional water storage device on the variation in the microbial community structure and pathogenic gene markers. Water stagnation in th...  相似文献   

9.
Acetochlor is a widely used herbicide in agricultural production. Studies have shown that acetochlor has obvious environmental hormone effects, and long-term exposure may pose a threat to human health. To quantify the hazards of acetochlor in drinking water, a health risk assessment of acetochlor was conducted in major cities of China based on the data of acetochlor residue concentrations in drinking water. The approach of the Species Sensitivity Distributions (SSD) method is used to extrapolate from animal testing data to reflect worst case human toxicity. Results show that hazard quotients related to acetochlor residues in drinking water for different age groups range from 1.94 × 10?4 to 6.13 × 10?4, so, there are no indication of human risk. Compared to the total estimated hazard quotient from oral intake of acetochlor, the chronic exposure imputed to acetochlor residues in drinking water in China accounts for 0.4%. This paper recommends 0.02 mg/L to be the maximum acetochlor residue concentration level in drinking water and source water criteria.  相似文献   

10.
Microtopography affects hydrological processes and forms different microhabitats.Our previous study uncovered that riparian zone microtopography created various microhabitats with different soil environments and runoff-infiltration patterns.However,how riparian microtopography and microtopography within the water area(waterfall and tributary) affects downstream water quality remains unclear.Therefore,water samples were taken almost monthly in both the main stream and the tributary,before and aft...  相似文献   

11.
Significant iron release from cast iron pipes in water distribution systems (WDSs), which usually occurs during the source water switch period, is a great concern of water utilities because of the potential occurrence of “red water” and customer complaints. This study developed a new method which combined in-situ water stagnation experiments with mathematical models and numerical simulations to predict the iron release caused by source water switch. In-situ water stagnation experiments were conducted to determine the total iron accumulation in nine cast iron pipes in-service in Beijing when switching the local water to treated Danjiangkou Reservior water. Results showed that the difference in the concentration increment of total iron in 24 hr (ΔCITI,24), i.e. short-term iron release, caused by source water switch was mainly dependent on the difference in the key quality parameters (pH, hardness, nitrate, Larson Ratio and dissolved oxygen (DO)) between the two source waters. The iron release rate (RFe) after switch, i.e. long-term iron release, was closely related to the pipe properties as well as the DO and total residual chlorine (TRC) concentrations. Mathematical models of ΔCITI,24 and RFe were developed to quantitatively reveal the relationship between iron release and the key quality parameters. The RFe model could successfully combine with EPANET-MSX, a numerical simulator of water quality for WDSs to extend the iron release modeling from pipe level to network level. The new method is applicable to predicting iron release during source water switch, thus facilitating water utilities to take preventive actions to avoid “red water”.  相似文献   

12.
The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite (As(III)) to negatively-charged arsenate (As(V)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal; however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(III) by solid oxidants such as manganese oxide, and the adsorption of As(V) accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(III). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(V). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants (DWTPs). This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally.  相似文献   

13.
As one typical cationic disinfectant, quaternary ammonium compounds (QACs) were approved for surface disinfection in the coronavirus disease 2019 pandemic and then unintentionally or intentionally released into the surrounding environment. Concerningly, it is still unclear how the soil microbial community succession happens and the nitrogen (N) cycling processes alter when exposed to QACs. In this study, one common QAC (benzalkonium chloride (BAC) was selected as the target contaminant, and its effects on the temporal changes in soil microbial community structure and nitrogen transformation processes were determined by qPCR and 16S rRNA sequencing-based methods. The results showed that the aerobic microbial degradation of BAC in the two different soils followed first-order kinetics with a half-life (4.92 vs. 17.33 days) highly dependent on the properties of the soil. BAC activated the abundance of N fixation gene (nifH) and nitrification genes (AOA and AOB) in the soil and inhibited that of denitrification gene (narG). BAC exposure resulted in the decrease of the alpha diversity of soil microbial community and the enrichment of Crenarchaeota and Proteobacteria. This study demonstrates that BAC degradation is accompanied by changes in soil microbial community structure and N transformation capacity.  相似文献   

14.
The Yongding New River is essential for the water supplies of Tianjin. To date, there is no comprehensive report that assesses the year-round water quality of the Yongding New River Main stream. Moreover, little attention has been given to determining a combined weight for improving the traditional comprehensive water quality identification index (ICWQII) by the game theory. Seven water quality parameters were investigated monthly along the main stream of the Yongding New River from May 2018 to April 2019. Organic contaminants and nitrogen pollution were mainly caused by point sources pollution, and the total phosphorus mainly by non-point source pollution. Dramatic spatio-temporal variations of water quality parameters were jointly caused by different pollutant sources and hydrometeorological factors. In terms of this study, an improved comprehensive water quality identification index (ICWQII) based on entropy weight or variation coefficient and traditional CWQII underestimated the water qualities, and an ICWQII based on the superstandard multiple method overvalued the assessments. By contrast, water qualities assessments done with an ICWQII based on the game theory matched perfectly with the practical situation. The ICWQII based on game theory proposed in this study takes into account not only the degree of disorder and variation of water quality data, but also the influence of standard-exceeded pollution indicators, whose results are relatively reasonable. All findings and the ICWQII based on game theory can provide scientific support for decisions related to the water environment management of the Yongding New River and other waters.  相似文献   

15.
Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.  相似文献   

16.
The decay and distribution of bacterial pathogens in water is an important information for the health risk assessment to guide water safety management, and suspended algae might affect bacterial pathogens in water. This study established microcosms to investigate the effects of algae-related factors on the representative indicators and opportunistic pathogen species in water. We found that suspended algae increased the persistence of targeted species by 1-2 orders of magnitude of concentrations ...  相似文献   

17.
针对游离态蓝藻胞外聚合物(EPS)在常规水处理工艺中不易去除、残留蓝藻EPS极易进入供水管网的特性,研究了蓝藻EPS对供水管网水质变化及生物稳定性的影响.针对管道使用时限分析了不同管道内部产生附膜条件下,蓝藻EPS对供水管网中余氯、浑浊度、生物稳定性、有机组分等主要水质指标变化规律的影响.结果表明,蓝藻EPS加快了管网余氯衰减速度,导致管网水质浑浊度在12~24h后即超出生活饮用水卫生标准上限,并使管网水质生物稳定性降低,BDOC在72h内增加37.2~39.5%,AOC增加365~393%,总活菌数升高18~20倍.阐明了蓝藻水华爆发时期净水厂出厂水残留蓝藻EPS在管网余氯存在前提下,仍然能够作为微生物营养基质和代谢能量,而促进管道内细菌生长繁殖,增加微生物代谢活性,刺激微生物胞外有机组分分泌释放,导致管网水质二次污染.  相似文献   

18.
针对游离态蓝藻胞外聚合物(EPS)在常规水处理工艺中不易去除、残留蓝藻EPS极易进入供水管网的特性,研究了蓝藻EPS对供水管网水质变化及生物稳定性的影响.针对管道使用时限分析了不同管道内部产生附膜条件下,蓝藻EPS对供水管网中余氯、浑浊度、生物稳定性、有机组分等主要水质指标变化规律的影响.结果表明,蓝藻EPS加快了管网余氯衰减速度,导致管网水质浑浊度在12~24h后即超出生活饮用水卫生标准上限,并使管网水质生物稳定性降低,BDOC在72h内增加37.2~39.5%,AOC增加365~393%,总活菌数升高18~20倍.阐明了蓝藻水华爆发时期净水厂出厂水残留蓝藻EPS在管网余氯存在前提下,仍然能够作为微生物营养基质和代谢能量,而促进管道内细菌生长繁殖,增加微生物代谢活性,刺激微生物胞外有机组分分泌释放,导致管网水质二次污染.  相似文献   

19.
沙河水库是北运河上游水系重要的汇,同时也是多源污染的重要聚集处,呈现非常规水源补给的缓滞水体特征,作为城市景观水体,对水环境和水生态要求较高,因此,沙河水库的治理对下游的水质改善至关重要.为进一步全面提升沙河水库水环境质量,以昌平区沙河水库为研究区域,采用MIKE21构建库区二维水动力水质模型,对沙河水库水量水质变化情...  相似文献   

20.
The temporal and spatial characteristics of urban river bacterial communities help us understand the feedback mechanism of bacteria to changes in the aquatic environment.The Fuhe River plays an important role in determining the water ecological environment of Baiyangdian Lake.16S rRNA gene sequencing was used to study the microbial distribution characteristics in the Fuhe River in different seasons.The results showed that some environmental factors of the surface water (ammonia nitrogen (NH...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号