首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen-rich graphitized carbon microspheres (NGCs) with hierarchically porous were constructed by self-assembly. Under different heat treatment conditions, the structure, morphology and properties of NGCs were studied by using multiple characterization techniques. The results showed that the chemical microenvironments (e.g. surface chemistry, degree of graphitization and defective, etc.) and microstructures properties (e.g. morphology, specific surface area, particle size, etc.) could be delicately controlled via thermal carbonization processes. The degradation of ofloxacin (OFLX) by NGCs activated peroxymonosulfate (PMS) was studied systematically. It was found that the synergistic coupling effect between optimum N or O bonding species configuration ratio (graphitic N and C=O) and special microstructure was the main reason for the enhanced catalytic activity of NGC-800 (calcination temperature at 800°C). Electron paramagnetic resonance (EPR) experiments and radical quenching experiments indicated that the hydroxyl (?OH), sulfate (SO4??) and singlet oxygen (1O2) were contributors in the NGC-800/PMS systems. Further investigation of the durability of chemical structures and surface active sites revealed that undergo N bonding species configuration reconstruction and cannibalistic oxidation during PMS activation reaction. The used NGC-800 physicochemical properties could be recovered by heat treatment to achieve the ideal catalytic performance. The findings proposed a valuable insight for catalytic performance and controllable design of construction.  相似文献   

2.
Natural organic matter (NOM) is known to play an important role in the transport and binding of trace metal elements in aquatic and soil systems. Thallium is a pollutant for which the extent of the role played by NOM is poorly known. Consequently, this study investigates thallium(I) and its complexation to a purified humic substance as proxy for NOM. Experiments were performed with the Donnan Membrane Technique to separate, for the first time, the free Tl+ ion from its complexed form in the bulk solution. Various pH and concentrations were investigated at constant ionic strength and constant NOM proxy concentrations in solution. Experimental results were described with NICA-Donnan model. Thallium complexation was compared to silver complexation using literature data and using the same NICA-Donnan formalism. Parameters for these two cations (Tl+ and Ag+) are reported in this article, for the first time. Results display low thallium complexation to the NOM proxy while silver competes with divalent cations for the NOM binding sites. Calculated speciation for dissolved thallium highlights the dominance of free thallium (Tl+) in solution whereas Tl-NOM complexes contribute roughly 15% to total Tl(I) species in river and lake type waters. Similar results are obtained for soil solutions, Tl-bound to NOM < 30% of total, from UK soils with different land use and geochemistry.  相似文献   

3.
Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 – 348 mg/kg) was more abundant than Cu (56 – 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants detected, with concentrations fluctuating over time, reflecting animal diets. This is the first study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid stacked manure from regular dairy operations. Monensin was the most frequently detected antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated the relative abundance of several types of plasmids involved in the spread of antibiotic resistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sulfonamide resistance genes were the most widespread and abundant genetic element surveyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits associated with amending agricultural soils with dairy manure must be carefully weighed against the potential negative consequences of any manure contaminants.  相似文献   

4.
With the increase in silver(Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles(Ag NPs) and silver ions(Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of Ag NPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both Ag NPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than Ag NPs under the same concentrations. To understand the toxicity of Ag NPs at a cellular level, reactive oxygen species(ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of Ag NPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of Ag NPs to Ag ions; fixed the Ag NPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the Ag NPs concentration.Exposure to Ag NPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity(for a fixed Ag NPs concentration of 5 mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. Ag NPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from Ag NPs under the single and coexistence conditions. Further works are needed to consider this potential for Ag NPs and Ag ions toxicity across a range of environmental conditions.Environmental Significance Statement: As silver nanoparticles(Ag NPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the Ag NPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of Ag NPs and silver ions(Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of Ag NPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions.  相似文献   

5.
In groundwater, deep soil layer, sediment, the widespread of xenobiotic organic contaminants (XOCs) have been leading to the concern of human health and eco-environment safety, which calls for a better understanding on the fate and remediation of XOCs in anoxic matrices. In the absence of oxygen, bacteria utilize various oxidized substances, e.g. nitrate, sulphate, metallic (hydr)oxides, humic substance, as terminal electron acceptors (TEAs) to fuel anaerobic XOCs degradation. Although there have been increasing anaerobic biodegradation studies focusing on species identification, degrading pathways, community dynamics, systematic reviews on the underlying mechanism of anaerobic contaminants removal from the perspective of electron flow are limited. In this review, we provide the insight on anaerobic biodegradation from electrons aspect — electron production, transport, and consumption. The mechanism of the coupling between TEAs reduction and pollutants degradation is deconstructed in the level of community, pure culture, and cellular biochemistry. Hereby, relevant strategies to promote anaerobic biodegradation are proposed for guiding to an efficient XOCs bioremediation.  相似文献   

6.
Bisphenol A (BPA) has received increasing attention due to its long-term industrial application and persistence in environmental pollution. Iron-based carbon catalyst activation of peroxymonosulfate (PMS) shows a good prospect for effective elimination of recalcitrant contaminants in water. Herein, considering the problem about the leaching of iron ions and the optimization of heteroatoms doping, the iron, nitrogen and sulfur co-doped tremella-like carbon catalyst (Fe-NS@C) was rationally designed using very little iron, S-C3N4 and low-cost chitosan (CS) via the impregnation-calcination method. The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA (20 mg/L) by activating PMS with the high kinetic constant (1.492 min−1) in 15 min. Besides, the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference, but also maintained an excellent degradation efficiency on different pollutants. Impressively, increased S-C3N4 doping amount modulated the contents of different N species in Fe-NS@C, and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing S-C3N4 contents, verifying pyridine N and Fe-Nx as main active sites in the system. Meanwhile, thiophene sulfur (C-S-C) as active sites played an auxiliary role. Furthermore, quenching experiment, EPR analysis and electrochemical test proved that surface-bound radicals (·OH and SO4⋅−) and non-radical pathways worked in the BPA degradation (the former played a dominant role). Finally, possible BPA degradation route were proposed. This work provided a promising way to synthesize the novel Fe, N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability.  相似文献   

7.
The creation of an environmentally friendly synthesis method for silver nanomaterials (AgNPs) is an urgent concern for sustainable nanotechnology development. In the present study, a novel straightforward and green method for the preparation of silver nanoparticle/reduced graphene oxide (AgNP/rGO) composites was successfully developed through the combination of phytosynthesis, continuous flow synthesis and microwave-assistance. Oriental persimmon (Diospyros kaki Thunb.) extracts were used as both plant reducing and capping agents for fast online synthesis of AgNP/rGO composites. The experimental parameters were optimized and the morphologies of the prepared materials were investigated. The characterization results reveal that spherical AgNPs were quickly synthesized and uniformly dispersed on rGO sheets using the proposed online system. Fourier transform infrared spectroscopy analysis confirmed that phenols, flavonoids, and other substances in the plant extracts played a decisive role in the synthesis of AgNP/rGO composites. Using sodium borohydride (NaBH4) degradation of p-nitrophenol (4-NP) as a model, the catalytic activity of the prepared AgNP/rGO materials was evaluated. The complete degradation of 4-NP was achieved within 12 min through the use of AgNP/rGO materials, and the composite had a much better catalytic activity than the bare AgNPs and rGO had. Compared with the conventional chemical method, our online method is facile, fast, cost-efficient, and environmentally friendly.  相似文献   

8.
The adsorption behaviors of ciprofloxacin (CIP), a fluoroquinolone antibiotic, onto goethite (Gt) in the presence of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) were investigated. Results showed that CIP adsorption kinetics in Gt with or without NPs both followed the pseudo-second-order kinetic model. The presence of AgNPs or TiO2NPs inhibited the adsorption of CIP by Gt. The amount of inhibition of CIP sorption due to AgNPs was decreased with an increase of solution pH from 5.0 to 9.0. In contrast, in the presence of TiO2NPs, CIP adsorption by Gt was almost unchanged at pHs of 5.0∼6.5 but was decreased with an increase of pH from 6.5 to 9.0. The mechanisms of AgNPs and TiO2NPs in inhibiting CIP adsorption by Gt were different, which was attributed to citrate coating of AgNPs resulting in competition with CIP for adsorption sites on Gt, while TiO2NPs could compete with Gt for CIP adsorption. Additionally, CIP was adsorbed by Gt or TiO2NPs through a tridentate complex involving the bidentate inner-sphere coordination of the deprotonated carboxylic group and hydrogen bonding through the adjacent carbonyl group on the quinoline ring. These findings advance our understanding of the environmental behavior and fate of fluoroquinolone antibiotics in the presence of NPs.  相似文献   

9.
Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils,while the roles of pH and organic ligands in this process are poorly understood.Herein,the reductive dissolution process of goethite by cysteine were explored in the presence of organic ligands.Our results showed that cysteine exhibited a strong reactivity towards goethite-a typical iron minerals in paddy soils with a rate constant ranging from 0.01 to0.1 hr-1.However,a large portion of Fe(Ⅱ) appeare...  相似文献   

10.
The widely use of silver nanoparticles (AgNPs) as antimicrobial agents gives rise to potential environmental risks. AgNPs exposure have been reported to cause toxicity in animals. Nevertheless, the known mechanisms of AgNPs toxicity are still limited. In this study, we systematically investigated the toxicity of AgNPs exposure using Drosophila melanogaster. We show here that AgNPs significantly decreased Drosophila fecundity, the third-instar larvae weight and rates of pupation and eclosion in a dose-dependent manner. AgNPs reduced fat body cell viability in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. AgNPs caused DNA damage in hemocytes and S2 cells. Interestingly, the mRNA levels of the entire metallothionein gene family were increased under AgNPs exposure as determined by RNA-seq analysis and validated by qRT-PCR, indicating that Drosophila responded to the metal toxicity of AgNPs by producing metallothioneins for detoxification. These findings provide a better understanding of the mechanisms of AgNPs toxicity and may provide clues to effect on other organisms, including humans.  相似文献   

11.
Nickel (hydr)oxide (NiOH) is known to be good co-catalyst for the photoelectrochemical oxidation of water, and for the photocatalytic oxidation of organics on different semiconductors. Herein we report a greatly improved activity of Bi2MoO6 (BMO) by nickel hexammine perchlorate (NiNH). Under visible light, phenol oxidation on BMO was slow. After NiNH, NiOH, and Ni2+ loading, a maximum rate of phenol oxidation increased by factors of approximately 16, 8.8, and 4.7, respectively. With a BMO electrode, all catalysts inhibited O2 reduction, enhanced water (photo-)oxidation, and facilitated the charge transfer at solid-liquid interface, respectively, the degree of which was always NiNH > NiOH > Ni2+. Solid emission spectra indicated that all catalysts improved the charge separation of BMO, the degree of which also varied as NiNH > NiOH > Ni2+. Furthermore, after a phenol-free aqueous suspension of NiNH/BMO was irradiated, there was a considerable Ni(III) species, but a negligible NH2 radical. Accordingly, a plausible mechanism is proposed, involving the hole oxidation of Ni(II) into Ni(IV), which is reactive to phenol oxidation, and hence promotes O2 reduction. Because NH3 is a stronger ligand than H2O, the Ni(II) oxidation is easier for Ni(NH3)6+ than for Ni(H2O)6+. This work shows a simple route how to improve BMO photocatalysis through a co-catalyst.  相似文献   

12.
Amides, a series of significant atmospheric nitrogen-containing volatile organic compounds (VOCs), can participate in new particle formation (NPF) throught interacting with sulfuric acid (SA) and organic acids. In this study, we investigated the molecular interactions of formamide (FA), acetamide (AA), N-methylformamide (MF), propanamide (PA), N-methylacetamide (MA), and N,N-dimethylformamide (DMF) with SA, acetic acid (HAC), propanoic acid (PAC), oxalic acid (OA), and malonic acid (MOA). Global minimum of clusters were obtained through the association of the artificial bee colony (ABC) algorithm and density functional theory (DFT) calculations. The conformational analysis, thermochemical analysis, frequency analysis, and topological analysis were conducted to determine the interactions of hydrogen-bonded molecular clusters. The heterodimers formed a hepta or octa membered ring through four different types of hydrogen bonds, and the strength of the bonds are ranked in the following order: SOH???O > COH???O > NH???O > CH???O. We also evaluated the stability of the clusters and found that the stabilization effect of amides with SA is weaker than that of amines with SA but stronger than that of ammonia (NH3) with SA in the dimer formation of nucleation process. Additionally, the nucleation capacity of SA with amides is greater than that of organic acids with amides.  相似文献   

13.
Dielectric barrier discharge (DBD) plasma applied as surface treatment technology was employed for the modification of Ag2O and graphitic carbon nitride (g-C3N4) powders. Subsequently, the pretreated powders were sequentially loaded onto TiO2 nanorods (TiO2-NRs) via electro-deposition, followed by calcination at N2 atmosphere. The results indicated that at the optimal plasma discharge time of 5 min for modification of g-C3N4 and Ag2O, photocurrent density of ternary composite was 6 times to bare TiO2-NRs under UV-visible light irradiation. Phenol was degraded by using DBD plasma-modified g-C3N4/Ag2O/TiO2-NRs electrode to analyze the photoelectrocatalytic performance. The removal rate of phenol for g-C3N4-5/Ag2O-5/TiO2-NRs electrode was about 3.07 times to that for TiO2-NRs electrode. During active species scavengers’ analysis, superoxide radicals and hydroxyl radicals were the main oxidation active species for pollutants degradation. A possible electron-hole separation and transfer mechanism of ternary composite with high photoelectrocatalytic performance was proposed.  相似文献   

14.
Cadmium (Cd) contamination in paddy soil has caused public concern. The uptake of Cd by rice plants depends on soil Cd mobility, which is in turn substantially influenced by organic matter (OM). In this review, we first summarize the fate of Cd in soil and the role of OM. We then focus on the effects of OM on Cd mobility in paddy soil and the factors influencing the remedial effectiveness of OM amendments. We further discuss the performance of straw incorporation in the remediation of Cd-contaminated paddy soils reported in laboratory and field studies. Considering the huge production of organic materials (such as straw) in agriculture, the use of natural OM for soil remediation has obvious appeal due to the environmental benefits and low cost. Although there have been successful application cases, the properties of OM amendments and soil can significantly affect the remedial performance of the OM amendments. Importantly, straw incorporation alone does not often decrease the mobility of Cd in soil or the Cd content in rice grains. Careful evaluation is required when considering natural OM amendments, and the factors and mechanisms that influence their remedial effectiveness need further investigation in paddy soil with realistic Cd concentrations.  相似文献   

15.
Little information is available on influences of the conversion of dissolved organic phosphorus(DOP) to inorganic phosphorus(IP) on algal growth and subsequent behaviors of arsenate(As(V)) in Microcystis aeruginosa(M. aeruginosa). In this study, the influences factors on the conversion of three typical DOP types including adenosine-5-triphosphate disodium salt(ATP), β-glycerophosphate sodium(βP) and D-glucose-6-phosphate disodium salt(GP)were investigated under different extracellular polymeric ...  相似文献   

16.
Few studies have been carried out to connect nutrient recovery as struvite from wastewater and sustainable utilization of the recovered struvite for copper and zinc immobilization in contaminated soil. This study revealed the effect of struvite on Cu and Zn immobilization in contaminated bio-retention soil in the presence of commonly exuded plant organic acids. The research hypothesis was that the presence of both struvite and organic acids may influence the immobilization of Cu and Zn in soil. ...  相似文献   

17.
Silver nanoparticles(AgNPs) have been widely used in many fields,which raised concerns about potential threats to biological sewage treatment systems.In this study,the phosphorus removal performance,enzymatic activity and microbial population dynamics in constructed wetlands(CWs) were evaluated under a long-term exposure to Ag NPs(0,50,and 200 μg/L) for 450 days.Results have shown that Ag NPs inhibited the phosphorus removal efficiency in a short-term exposure,whereas caused no obviously negativ...  相似文献   

18.
The optimization of volume ratio (VAn/VA/VO) and nitrate recycling ratio (R) in a two-sludge denitrifying phosphorus removal (DPR) process of Anaerobic Anoxic Oxic-Moving Bed Biofilm Reactor (A2/O-MBBR) was investigated. The results showed that prolonged anaerobic retention time (HRTAn: 1.25→3.75 hr) exerted favorable effect on chemical oxygen demand (COD) removal (57.26%→73.54%), poly-β-hydroxyalkanoates (PHA) synthesis (105.70→138.12 mgCOD/L) and PO43? release (22.3→38.9 mg/L). However, anoxic retention time (HRTA) and R exhibited positive correlation with PHA utilization (43.87%-81.34%) and denitrifying phosphorus removal (DPR) potential (ΔNO3?/ΔPO43?: 0.57-1.34 mg/mg), leading to dramatical TN removal variations from 68.86% to 81.28%. Under the VAn/VA/VO ratio of 2:6:0, sludge loss deteriorated nutrient removals but the sludge bioactivity quickly recovered when the oxic zone was recovered. The sludge characteristic and microstructure gradually transformed under the dissolved oxygen (DO) control (1.0-1.5→1.5-2.0 mg/L), in terms of sludge volume index (SVI: 194→57 mL/gVSS), median-particle-size (D50: 99.6→300.5 μm), extracellular polymeric substances (EPS) (105.62→226.18 mg/g VSS) and proteins/polysaccharides (PN/PS) ratio (1.52→3.46). Fluorescence in situ hybridization (FISH) results showed that phosphorus accumulation organisms (PAOs) (mainly Cluster I of Accumulibacter, contribution ratio: 91.79%-94.10%) dominated the superior DPR performance, while glycogen accumulating organisms (GAOs) (mainly Competibacter, contribution ratio: 82.61%-86.89%) was responsible for deteriorative TN and PO43? removals. The optimal HRTA and R assembled around 5-6.5 hr and 300%-400% based on the PHA utilization and DRP performance, and the oxic zones also contributed to PO43? removal although it showed low dependence on DO concentration and oxic retention time (HRTO).  相似文献   

19.
Accumulation of organic contaminants on fullerene nanoparticles (nC60) may significantly affect the risks of C60 in the environment. The objective of this study was to further understand how the interplay of nC60 formation routes and humic acid modification affects contaminant adsorption of nC60. Specifically, adsorption of 1,2,4,5-tetrachlorobenzene (a model nonionic, hydrophobic organic contaminant) on nC60 was greatly affected by nC60 formation route – the formation route significantly affected the aggregation properties of nC60, thus affecting the available surface area and the extent of adsorption via the pore-filling mechanism. Depending on whether nC60 was formed via the “top-down” route (i.e., sonicating C60 powder in aqueous solution) or “bottom-up” route (i.e., phase transfer from an organic solvent) and the type of solvent involved (toluene versus tetrahydrofuran), modification of nC60 with Suwannee River humic acid (SRHA) could either enhance or inhibit the adsorption affinity of nC60. The net effect depended on the specific way in which SRHA interacted with C60 monomers and/or C60 aggregates of different sizes and morphology, which determined the relative importance of enhanced adsorption from SRHA modification via preventing C60 aggregation and inhibited adsorption through blocking available adsorption sites. The findings further demonstrate the complex mechanisms controlling interactions between nC60 and organic contaminants, and may have significant implications for the life-cycle analysis and risk assessment of C60.  相似文献   

20.
Fe3O4-based materials are widely used for magnetic separation from wastewater. However, they often suffer from Fe-leaching behavior under acidic conditions, decreasing their activity and limiting sustainable practical applications. In this study, covalent organic frameworks (COFs) were used as the shell to protect the Fe3O4 core, and the Fe3O4@COF core-shell composites were synthesized for As(III) removal from acid wastewater. The imine-linked COFs can in situ grow on the surface of the Fe3O4 core layer by layer with [COFs/Fe3O4]mol ratio of up to 2:1. The Fe-leaching behavior was weakened over a wide pH range of 1-13. Moreover, such composites keep their magnetic characteristic, making them favorable for nanomaterial separation. As(III) batch adsorption experiments results indicated that, when COFs are used as the shell for the Fe3O4 core, a balance between As(III) removal efficiencies and the thickness of the COF shell exists. Higher As(III) removal efficiencies are obtained when the [COFs/Fe3O4]mol ratios were < 1.5:1, but thicker COF shells were not beneficial for As(III) removal. Such composites also exhibited better As(III) removal performances in the pH range of 1–7. Over a wide pH range, the zeta potential of Fe3O4@COF core-shell composites becomes more positive, which benefits the capture of negative arsenic ions. In addition, thinner surface COFs were favorable for mass transfer and facilitating the reaction of Fe and As elements. Our study highlights the promise of using COFs in nanomaterial surface protection and achieving As(III) depth removal under acidic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号