首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface ozone (O3) has become a critical pollutant impeding air quality improvement in many Chinese megacities. Chengdu is a megacity located in Sichuan Basin in southwest China, where O3 pollution occurs frequently in both spring and summer. In order to understand the elevated O3 during spring in Chengdu, we conducted sampling campaign at three sites during O3 pollution episodes in April. Volatile organic compounds (VOCs) compositions at each site were similar, and oxygenated VOCs (OVOCs) concentrations accounted for the highest proportion (35%-45%), followed by alkanes, alkens (including acetylene), halohydrocarbons, and aromatics. The sensitivity of O3 to its precursors was analyzed using an observation based box model. The relative incremental reactivity of OVOCs was larger than other precursors, suggesting that they also played the dominant role in O3 formation. Furthermore, the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city. The main sources of VOCs in spring were from combustion (27.75%), industrial manufacturing (24.17%), vehicle exhaust (20.35%), and solvent utilization (18.35%). Discussions on VOCs and NOx reduction schemes suggested that Chengdu was typical in the VOC-limited regime, and VOC emission reduction would help to prevent and control O3. The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO2 needs to reach more than 3 in order to achieve O3 prevention. Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.  相似文献   

2.
挥发性有机物(VOCs)是对流层臭氧和二次有机气溶胶等二次污染生成过程的关键前体物.研究VOCs的浓度水平、组成特征和反应活性对揭示复合型大气污染的形成机制具有重要意义.本研究利用在线气相-氢离子火焰法测量了2009年春节和"五一"节期间上海市城区大气中56种VOCs.结果表明,上海市城区大气受机动车尾气排放源影响明显,VOCs浓度日变化特征呈双峰状,与上下班交通高峰基本吻合.大气中VOCs平均体积分数为(28.39±18.35)×10-9;各组分百分含量依次为:烷烃46.6%,芳香烃27.0%,烯烃15.1%,乙炔11.2%.用OH消耗速率和臭氧生成潜势(OFP)评估了VOCs大气化学反应活性,结果表明,上海市城区大气VOCs化学反应活性与VOCs体积浓度相关性良好;VOCs活性与乙烯相当,平均化学反应活性较强;OH消耗速率贡献最大的物种是烯烃51.2%和芳香烃31.8%;OFP贡献最大的物种是芳香烃53.4%和烯烃30.2%;对臭氧生成贡献最大的关键活性物种为丙烯、乙烯、甲苯、二甲苯以及丁烯类物质.  相似文献   

3.
Characteristics of atmospheric VOCs (volatile organic compounds) have been extensively studied in megacities in China, however, they are scarcely investigated in medium/small-sized cities in North China Plain (NCP). A comprehensive research on possible sources of VOCs was conducted in a medium-sized city of NCP, from May to September 2019. A total of 143 canister samples of 8 sites in Xuchang city were collected, and 57 VOC species were detected. The average VOC concentrations were 42.6 ± 31.6 μg/m3, with 53.7 ± 31.0 μg/m3 and 32.1 ± 27. 8 μg/m3, in the morning and afternoon, respectively. Alkenes and aromatics contributed 80% of the total ozone formation potential (OFP). Aromatics accounted for more than 95% of secondary organic aerosol potential (SOAP). VOCs were dominated by the local emission with significant transport from the southeast direction. PMF analysis extracted 6 sources, which were combustion (33.1%), LPG usage (19.3%), vehicular exhaust & fuel evaporation (15.8%), solvent usage (15.2%), industrial (9.11%) and biogenic (7.51%), respectively and they contributed 33.4%, 17.6%, 12.9%, 18.6%, 9.28% and 8.22% to the OFP, respectively. Combustion and LPG usage were the dominant VOC sources; and combustion, solvent usage and LPG usage were the main sources of OFP in Xuchang city, which were different to megacities in China with a high contribution from vehicular exhaust, solvent usage and industry, suggesting specific control strategies on VOCs need to be implemented in medium-sized city such as Xuchang city.  相似文献   

4.
Based on one-year observation, the concentration, sources, and potential source areas of volatile organic compounds (VOCs) were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haikou, China. The results showed that the annual average concentration of total VOCs (TVOCs) was 11.4 ppbV, and the composition was dominated by alkanes (8.2 ppbV, 71.4%) and alkenes (1.3 ppbV, 20.5%). The diurnal variation in the concentration of dominant VOC species showed a distinct bimodal distribution with peaks in the morning and evening. The greatest contribution to ozone formation potential (OFP) was made by alkenes (51.6%), followed by alkanes (27.2%). The concentrations of VOCs and nitrogen dioxide (NO2) in spring and summer were low, and it was difficult to generate high ozone (O3) concentrations through photochemical reactions. The significant increase in O3 concentrations in autumn and winter was mainly related to the transmission of pollutants from the northeast. Traffic sources (40.1%), industrial sources (19.4%), combustion sources (18.6%), solvent usage sources (15.5%) and plant sources (6.4%) were identified as major sources of VOCs through the positive matrix factorization (PMF) model. The southeastern coastal areas of China were identified as major potential source areas of VOCs through the potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models. Overall, the concentration of ambient VOCs in Haikou was strongly influenced by traffic sources and long-distance transport, and the control of VOCs emitted from vehicles should be strengthened to reduce the active species of ambient VOCs in Haikou, thereby reducing the generation of O3.  相似文献   

5.
Because of the recent growth in ground-level ozone and increased emission of volatile organic compounds (VOCs), VOC emission control has become a major concern in China. In response, emission caps to control VOC have been stipulated in recent policies, but few of them were constrained by the co-control target of PM2.5 and ozone, and discussed the factor that influence the emission cap formulation. Herein, we proposed a framework for quantification of VOC emission caps constrained by targets for PM2.5 and ozone via a new response surface modeling (RSM) technique, achieving 50% computational cost savings of the quantification. In the Pearl River Delta (PRD) region, the VOC emission caps constrained by air quality targets varied greatly with the NOx emission reduction level. If control measures in the surrounding areas of the PRD region were not considered, there could be two feasible strategies for VOC emission caps to meet air quality targets (160 µg/m3 for the maximum 8-hr-average 90th-percentile (MDA8-90%) ozone and 25 µg/m3 for the annual average of PM2.5): a moderate VOC emission cap with <20% NOx emission reductions or a notable VOC emission cap with >60% NOx emission reductions. If the ozone concentration target were reduced to 155 µg/m3, deep NOx emission reductions is the only feasible ozone control measure in PRD. Optimization of seasonal VOC emission caps based on the Monte Carlo simulation could allow us to gain higher ozone benefits or greater VOC emission reductions. If VOC emissions were further reduced in autumn, MDA8-90% ozone could be lowered by 0.3-1.5 µg/m3, equaling the ozone benefits of 10% VOC emission reduction measures. The method for VOC emission cap quantification and optimization proposed in this study could provide scientific guidance for coordinated control of regional PM2.5 and O3 pollution in China.  相似文献   

6.
Volatile organic compounds(VOCs) as precursors of ozone and secondary organic aerosols can cause adverse effects on the environment and human health.However,knowledge of the VOC vertical profile in the lower troposphere of major Chinese cities is poorly understood.In this study,tethered balloon flights were conducted over the juncture of BeijingTianjin-Hebei in China during the winter of 2016.Thirty-six vertical air samples were collected on selected heavy and light pollution days at altitudes o...  相似文献   

7.
Coking industry is an important volatile organic compounds(VOCs) emission source in China,however,detailed information on VOCs emissions is lacking.Therefore,we selected a typical mechanized coking plant and collected air samples according to the Emission Standard of Pollutants for Coking Chemical Industry(GB16171-2012).Using gas chromatographymass spectrometry method,we analyzed the VOCs in the air samples,and applied maximum increment reactivity(MIR) rule to estimate ozone formation potential(...  相似文献   

8.
Increasing attention has been paid to the air pollution more recently. Smog chamber has been proved as a necessary and effective tool to study atmospheric processes, including photochemical smog and haze formation. A novel smog chamber was designed to study the atmospheric photochemical reaction mechanism of typical volatile organic compounds(VOCs) as well as the aging of aerosols. The smog chamber system includes an enclosure equipped with black lights as the light source, two parallel reactors...  相似文献   

9.
The nuisance from odor caused by municipal solid waste(MSW) is resulting in a growing number of public complaints and concerns. Odor pollution occurs in the initial decomposition stage of MSW, including waste collection, transportation and early pre-treatment. Furthermore, decomposition takes place in waste facilities that are often close to living areas, which can result in odor impacts on local inhabitants. However, this aspect of odor impact from MSW has not been well studied. In the current ...  相似文献   

10.
Trace analysis of volatile organic compounds (VOCs) during wildfires is imperative for environmental and health risk assessment. The use of gas sampling devices mounted on unmanned aerial vehicles (UAVs) to chemically sample air during wildfires is of great interest because these devices move freely about their environment, allowing for more representative air samples and the ability to sample areas dangerous or unreachable by humans. This work presents chemical data from air samples obtained in Davis, CA during the most destructive wildfire in California's history - the 2018 Camp Fire – as well as the deployment of our sampling device during a controlled experimental fire while fixed to a UAV. The sampling mechanism was an in-house manufactured micro-gas preconcentrator (µPC) embedded onto a compact battery-operated sampler that was returned to the laboratory for chemical analysis. Compounds commonly observed in wildfires were detected during the Camp Fire using gas chromatography mass spectrometry (GC–MS), including BTEX (benzene, toluene, ethylbenzene, m+p-xylene, and o-xylene), benzaldehyde, 1,4-dichlorobenzene, naphthalene, 1,2,3-trimethylbenzene and 1-ethyl-3-methylbenzene. Concentrations of BTEX were calculated and we observed that benzene and toluene were highest with average concentrations of 4.7 and 15.1 µg/m3, respectively. Numerous fire-related compounds including BTEX and aldehydes such as octanal and nonanal were detected upon experimental fire ignition, even at a much smaller sampling time compared to samples taken during the Camp Fire. Analysis of the air samples taken both stationary during the Camp Fire and mobile during an experimental fire show the successful operation of our sampler in a fire environment.  相似文献   

11.
Volatile organic compounds(VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the “national plan on environmental improvement for the 13th Five-Year Plan period”. Therefore, the de...  相似文献   

12.
Volatile organic compounds (VOCs), important precursors of ozone (O3) and fine particulate matter (PM2.5), are the key to curb the momentum of O3 growth and further reducing PM2.5 in China. Container manufacturing industry is one of the major VOC emitters, and more than 96% containers of the world are produced in China, with the annual usage of coatings of over 200,000 tons in recent years. This is the first research on the emission characteristics of VOCs in Chinese container manufacturing industry, including concentration and ozone formation potential (OFP) of each species. The result shows that the largest amounts of VOCs are emitted during the pretreatment process, followed by the paint mixing process and primer painting process, and finally other sprays process. The average VOC concentrations in the workshops, the exhausts before treatment and the exhausts after treatment are ranging from 82.67–797.46 , 170–1,812.65 , 66.20–349.63 mg/m3, respectively. Benzenes, alcohols and ethers are main species, which contribute more than 90% OFP together. Based on the emission characteristics of VOCs and the technical feasibility, it is recommended to set the emission limit in standard of benzene to 1.0 mg/m3, toluene to 10 mg/m3, xylene to 20 mg/m3, benzenes to 40 mg/m3, alcohols and ethers to 50 mg/m3, and VOCs to 100 mg/m3. The study reports the industry emission characteristics and discusses the standard limits, which is a powerful support to promote VOCs emission reduction, and to promote the coordinated control of PM2.5 and O3 pollution.  相似文献   

13.
Volatile organic compounds (VOCs) have attracted much attention for decades as they are the precursors of photochemical smog and are harmful to the environment and human health. Vacuum ultraviolet (VUV) photodegradation is a simple and effective method to decompose VOCs (ranging from tens to hundreds of ppmV) without additional oxidants or catalysts in the air at atmospheric pressure. In this paper, we review the research progress of VOCs removal via VUV photodegradation. The fundamentals are outlined and the key operation factors for VOCs degradation, such as humidity, oxygen content, VOCs initial concentration, light intensity, and flow rate, are discussed. VUV photodegradation of VOCs mixture is elucidated. The application of VUV photodegradation in combination with ozone-assisted catalytic oxidation (OZCO) and photocatalytic oxidation (PCO) systems, and as the pre-treatment technique for biological purification are illustrated. Based on the summary, we propose the challenges of VUV photodegradation and perspectives for its future development.  相似文献   

14.
Rate coefficients for the reaction of NO3 radicals with 6 unsaturated volatile organic compounds (VOCs) in a 7300 L simulation chamber at ambient temperature and pressure have been determined by the relative rate method. The resulting rate coefficients were determined for isoprene, 2-carene, 3-carene, methyl vinyl ketone (MVK), methacrolein (MACR) and crotonaldehyde (CA), as (6.6 ± 0.8) × 10?13, (1.8 ± 0.6) × 10?11, (8.7 ± 0.5) × 10?12, (1.24 ± 1.04) × 10?16, (3.3 ± 0.9) × 10?15 and (5.7 ± 1.2) × 10?15 cm3/(molecule?sec), respectively. The experiments indicate that NO3 radical reactions with all the studied unsaturated VOCs proceed through addition to the olefinic bond, however, it indicates that the introduction of a carbonyl group into unsaturated VOCs can deactivate the neighboring olefinic bond towards reaction with the NO3 radical, which is to be expected since the presence of these electron-withdrawing substituents will reduce the electron density in the π orbitals of the alkenes, and will therefore reduce the rate coefficient of these electrophilic addition reactions. In addition, we investigated the product formation from the reactions of 2-carene and 3-carene with the NO3 radical. Qualitative identification of an epoxide (C10H16OH+), caronaldehyde (C10H16O2H+) and nitrooxy-ketone (C10H16O4NH+) was achieved using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a reaction mechanism is proposed.  相似文献   

15.
分析了2018年10月初广州市一次为期6d的臭氧污染事件,利用拉格朗日光化学轨迹模型对广州市的臭氧污染进行了溯源分析,量化了不同区域对臭氧污染的贡献,评估了重点排放区域不同行业和不同前体物减排对臭氧污染控制的效果.结果 表明,本次污染事件期间,日最大8h臭氧均值均超过160 μg·m-3,最高达271 μg·m-3,氮...  相似文献   

16.
王峰  汪健伟  杨宁  翟菁  侯灿 《环境科学》2021,42(12):5713-5722
本文基于三维区域空气质量模式WRF-Chem,通过修改模式化学模块,量化输出过程量和诊断量,提供了一种定量分析挥发性有机化合物(VOCs)源强不确定性对O3生成影响的方法.为无法定量计算VOCs源强导致的臭氧生成率[P(O3)]偏差,以及由此对O3体积分数分布和污染控制相关联的VOCs敏感区和NOx 敏感区分布的误判提...  相似文献   

17.
Volatile organic compounds (VOCs) are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing,the environmental impact and health risk of VOC were assessed.In the winter polluted days,the secondary organic aerosol formation potential (SOAP) of VOC (199.70±15.05 mg/m3) was significantly higher than that on other days.And ar...  相似文献   

18.
The source apportionment of PM2.5 is essential for pollution prevention.In view of the weaknesses of individual models,we proposed an integrated chemical mass balancesource emission inventory(CMB-SEI) model to acquire more accurate results.First,the SEI of secondary component precursors(SO2,NOx,NH3,and VOCs) was compiled to acquire the emission ratios of these sources for the precursors.Then,a regular CMB simulation was executed to obtain the contribut...  相似文献   

19.
利用挥发性有机物(VOCs)在线监测数据对新冠肺炎疫情(COVID-19)期间(2019年12月25日~2020年2月24日)雄安地区环境空气中VOCs进行监测,探讨了疫情防控前、后VOCs的变化特征、臭氧生成潜势及来源解析.结果表明,疫情防控后φ(TVOCs)平均值为45.1×10-9,约为疫情防控前φ(TVOCs)...  相似文献   

20.
We present the continuously measurements of volatile organic compounds(VOCs) at a receptor site(Wan Qing Sha, WQS) in the Pearl River Delta(PRD) region from September to November of 2017. The average mixing ratios of total VOCs(TVOCs) was 36.3 ± 27.9 ppbv with the dominant contribution from alkanes(55.5%), followed by aromatics(33.3%). The diurnal variation of TVOCs showed a strong photochemical consumption during daytime,resulting in the formation of ozone(O3). Five VOC sources were ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号