首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Algal blooms and wastewater effluents can introduce algal organic matter (AOM) and effluent organic matter (EfOM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts (DBPs) during chlorination and chloramination from various types of dissolved organic matter (DOM, e.g., natural organic matter (NOM), AOM, and EfOM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was observed in NOM than AOM and EfOM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor (BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance (SUVA) increased. AOM favored the formation of iodinated THMs (I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor (ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination.  相似文献   

2.
The characteristics of dissolved organic matter (DOM) can significantly affect the degradation of target compounds by the advanced oxidation processes. In this study, the effects of the different hydrophobicity/hydrophilicity fractions, molecular weight (MW) fractions, fluorescence components and molecular components of DOM extracted from municipal wastewater on the degradation of 4 pharmaceutically active compounds (PhACs), including carbamazepine, clofibric acid, atenolol and erythromycin by the UV/H2O2 process were investigated. The results showed that the degradation rate constants of 4 PhACs decreased dramatically in the presence of DOM. The linear regressions of 4 PhACs degradation as a function of specific fluorescence intensity (SFI) are exhibited during the degradation of 4 PhACs and the SFI may be used to evaluate effect of DOM on target compounds in wastewater. The hydrophobic acid (HPO-A) exhibited the strongest inhibitory effect on degradation of 4 PhACs during oxidation process. The small MW fractions of DOM significantly inhibited the degradation of 4 PhACs during oxidation process. Among three fluorescence components, hydrophobic humic-like substances may significantly inhibit the degradation of 4 PhACs during oxidation process. At the molecular level, the formulas may be derived from terrestrial sources. CHO compound may significantly inhibit the degradation of 4 PhACs during oxidation process on formula classes. The unsaturated hydrocarbons, carbohydrates and tannins compounds may significantly inhibit the effectiveness of the UV/H2O2 process on compound classes.  相似文献   

3.
Ultraviolet (UV)/monochloramine (NH2Cl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of UV/NH2Cl process, ii) compared with UV/Cl2 in inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NH2Cl showed better inactivation efficiency than that of UV alone and UV/Cl2, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NH2Cl (2.0 mg/L) was 0.034, 0.030 and 0.061 cm2/mJ, respectively, which were higher than that of UV alone (0.027, 0.026 and 0.024 cm2/mJ) and UV/Cl2 (0.023, 0.026 and 0.031 cm2/mJ). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets (hydrophobins) and pigments. After UV/NH2Cl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NH2Cl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi.  相似文献   

4.
The emissions of NO2 and HONO from the KNO3 photolysis in the presence of TiO2 were measured using a round-shape reactor coupled to a NOx analyzer. TiO2 played important roles in the emission flux density of NO2 (RNO2) and HONO (RHONO), depending on crystal structures and mass ratios of TiO2. RNO2 and RHONO significantly decreased with increasing the rutile and anatase mass ratios from 0 to 8 and 0.5 wt.%, respectively. Nevertheless, with further increasing the anatase mass ratio to 8 wt.%, there was an increase in RNO2 and RHONO. RNO2 on KNO3/TiO2/SiO2 had positive correlation with the KNO3 mass (1–20 wt.%), irradiation intensity (80–400 W/m2) and temperature (278–308 K), while it had the maximum value at the relative humidity (RH) of 55%. RHONO on KNO3/TiO2/SiO2 slightly varied with the KNO3 mass and temperature, whereas it increased with the irradiation intensity and RH. In addition, the mechanism for NO2 and HONO emissions from the nitrates photolysis and atmospheric implications were discussed.  相似文献   

5.
Tri(2-chloroethyl) phosphate(TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl-and PO43- of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system ...  相似文献   

6.
The reference method to quantify mixing ratios of the criteria air pollutant nitrogen dioxide (NO2) is NO-O3 chemiluminescence (CL), in which mixing ratios of nitric oxide (NO) are measured by sampling ambient air directly, and mixing ratios of NOx (= sum of NO and NO2) are measured by converting NO2 to NO using, for example, heated molybdenum catalyst or, more selectively, photolytic conversion (P-CL). In this work, the nitrous acid (HONO) interference in the measurement of NO2 by P-CL was investigated. Results with two photolytic NO2 converters are presented. The first used radiation centered at 395 nm, a wavelength region commonly utilized in P-CL. The second used light at 415 nm, where the overlap with the HONO absorption spectrum and hence its photolysis rate are less. Mixing ratios of NO2, NOx and HONO entering and exiting the converters were quantified by Thermal Dissociation Cavity Ring-down Spectroscopy (TD-CRDS). Both converters exhibited high NO2 conversion efficiency (CFNO2; > 90%) and partial conversion of HONO. Plots of CF against flow rate were consistent with photolysis frequencies of 4.2 s-1 and 2.9 s-1 for NO2 and 0.25 s-1 and 0.10 s?1 for HONO at 395 nm and 415 nm, respectively. CFHONO was larger than predicted from the overlap of the emission and HONO absorption spectra. The results imply that measurements of NO2 by P-CL marginally but systematically overestimate true NO2 concentrations, and that this interference should be considered in environments with high HONO:NO2 ratios such as the marine boundary layer or in biomass burning plumes.  相似文献   

7.
Pre-oxidation has been reported to be an effective way to remove algal cells in water, but the released algal organic matter (AOM) could be oxidized and lead to the increment in disinfection by-product (DBP) formation. The relationship between pre-oxidation and AOM-derived DBP formation needs to be approached more precisely. This study compared the impact of four pre-oxidants, ozone (O3), chlorine dioxide (ClO2), potassium permanganate (KMnO4) and sodium hypochlorite (NaClO), on the formation of nitrogenous (N-) and carbonaceous (C-) DBPs in AOM chlorination. The characterization (fluorescent properties, molecular weight distribution and amino acids concentration) on AOM samples showed that the characterization properties variations after pre-oxidation were highly dependent on the oxidizing ability of oxidants. The disinfection experiments showed that O3 increased DBP formation most significantly, which was consistent with the result of characterization properties variations. Then canonical correspondent analysis (CCA) and Pearson's correlation analysis were conducted based on the characterization data and DBP formation. CCA indicated that C-DBPs formation was highly dependent on fluorescent data. The formation of haloacetic acids (HAAs) had a positive correlation with aromatic protein-like component while trichloromethane (TCM) had a positive correlation with fulvic acid-like component. Pearson's correlation analysis showed that low molecular weight fractions were favorable to form N-DBPs. Therefore, characterization data could provide the advantages in the control of DBP formation, which further revealed that KMnO4 and ClO2 were better options for removing algal cells as well as limiting DBP formation.  相似文献   

8.
Ultraviolet/persulfate (UV/PS) and Ultraviolet/hydrogen peroxide (UV/H2O2) have attracted much attention in recent years as advanced oxidation processes for water treatment. However, it is not all clear how these two methods affect the formation of cyanogen chloride (CNCl) in the subsequent water chlorination process. In this study, it was found that both UV/H2O2 and UV/PS pre-oxidation promoted the formation of CNCl in six actual water samples collected from urban rivers. Glycine, uric acid, arginine and histidine were investigated as the model compounds to explore the effects of different methods on the production of CNCl. The results showed that compared with chlorination alone, pre-oxidation by UV/H2O2 and UV/PS can reduce the production of CNCl for glycine and uric acid by up to 95% during post-chlorination process. However, they can greatly promote the formation of CNCl for arginine and histidine by up to 120-fold. In a more detailed investigation, pre-oxidation of histidine formed highly reactive intermediates to chlorine, leading to increased CNCl formation and chlorine consumption. The results showed that the precursors of CNCl was altered after pre-oxidation, and need to be re-evaluated.  相似文献   

9.
We propose a novel sulfide-driven process to recover N2O during the traditional denitrification process. The optimum initial sulfide concentration was 120 mg/L, and the N2O percentage in the gaseous products (N2O+N2) was up to 82.9%. Moreover, sulfide involved in denitrification processes could substitute for organic carbon as an electron donor, e.g., 1 g sulfide was equivalent to 0.5-2 g COD when sulfide was oxidized to sulfur and sulfate. The accumulation of N2O was mainly due to the inhibiting effect of sulfide on nitrous oxide reductase (N2OR), which was induced by the supply insufficiency of electrons from cytochrome c (cyt c) to N2OR. When the initial sulfide concentration was 120 mg/L, the N2OR activity was only 36.8% of its original level. According to the results of cyclic voltammetry, circular dichroism spectra and fluorescence spectra, significant changes in the conformations and protein structures of cyt c were caused by sulfide, and cyt c completely lost its electron transport capacity. This study provides a new concept for N2O recovery driven by sulfide in the denitrification process. In addition, the findings regarding the mechanism of the inhibition of N2OR activity have important implications both for reducing emissions of N2O and recovering N2O in the sulfide-driven denitrification process.  相似文献   

10.
Pt/Al2 O3 catalysts with mean Pt particle size ranged from 2.7 to 7.1 nm were synthesized by chemical reduction method,and the sulfated counterparts were prepared by impregnation of sulfuric acid.The turnover frequency of platinum for soot oxidation under loose contact conditions in a feed flow containing NO and O2 are positively correlated with the size of platinum.The sulfated Pt/Al2 O3 exhibits higher catalytic activity for soot oxidation...  相似文献   

11.
Cement industry is an intensive source of fuel consumption and greenhouse gases (GHGs) emissions. This industry is responsible for 5% of GHGs emissions and is among the top industrial sources of carbon dioxide (CO2) emissions. Therefore, CO2 emissions reduction from cement production process has been always an appealing subject for researches in universities and industry. Various efforts have been carried out to mitigate the huge mass of CO2 emissions from the cement industry. Although, majority of these strategies are technically viable, due to various barriers, the level of CO2 mitigation in cement industry is still not satisfactory. Among numerous researches on this topic, only a few have tried to answer why CO2 abatement strategies are not globally practiced yet. This work aims to highlight the challenges and barriers against widespread and effective implementation of CO2 mitigation strategies in the cement industry and to propose practical solutions to overcome such barriers.  相似文献   

12.
The degradation of atrazine (ATZ), sulfamethoxazole (SMX) and metoprolol (MET) in flow-through VUV/UV/H2O2 reactors was investigated with a focus on the effects of H2O2 dosage and reactor internal diameter (ID). Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2 reactors following the pseudo first-order kinetics (R2 > 0.92). However, the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient. With the increase of H2O2 dosage, the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents, which could be explained by the different reactivities of the pollutants towards HO?. A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate, but the change in energy efficiency was much more complicated. In reality, the electrical energy per order (EEO) of the investigated VUV/UV/H2O2 treatments ranged between 0.14–0.20, 0.07–0.14 and 0.09–0.26 kWh/m3/order for ATZ, SMX and MET, respectively, with the lowest EEO for each pollutant obtained under varied H2O2 dosages and reactor IDs. This study has demonstrated the efficiency of VUV/UV/H2O2 process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors, and elaborated the influential mechanisms of H2O2 dosage and reactor ID on the reactor performances.  相似文献   

13.
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.  相似文献   

14.
In this study, the thermal stability of a ferric oxide catalyst for mercury oxidation was found to be considerably promoted by doping with La2O3. The catalysts doped with La2O3 maintained a higher surface area when subjected to high-temperature calcination, with lower average pore size and a narrower pore size distribution. X-ray diffraction (XRD) results revealed that La2O3 doping hinders the growth of catalyst particles and crystallization of the material at high temperatures. Both NO and SO2 inhibited Hg0 oxidation over the La2O3/Fe2O3 catalyst. Fourier transform infrared (FTIR) spectra revealed that SO2 reacts with O2 over the catalysts to form several species that are inert for mercury oxidation, such as SO42?, HSO4?, or other related species; these inert species cover the catalyst surface and consequently decrease Hg0 oxidation capacity. In addition, NO or SO2 competed with Hg0 for active sites on the La2O3/Fe2O3 catalyst and hindered the adsorption of mercury, thereby inhibiting subsequent Hg0 oxidation. Hg0 oxidation on the La2O3/Fe2O3 catalyst mainly followed the Eley–Rideal mechanism. Moreover, the inhibition effects of NO and SO2 were at least partially reversible, and the catalytic activity was temporarily restored after eliminating NO or SO2.  相似文献   

15.
Spatiotemporal variations of ozone (O3) taken from the Copernicus Atmosphere Monitoring Service (CAMS) and the second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) were intercompared and evaluated with ground and ozone-sonde observations over China in 2018 and 2019. Intercomparison of the surface ozone from CAMS and MERRA-2 reanalysis showed significant negative bias (CAMS minus MERRA-2, same below) at Tibetan Plateau of up to 80 µg/m3, and the average R2 was about 0.6 across China. Evaluated with the ground observations from China National Environmental Monitoring Center (CNEMC), we found that CAMS and MERRA-2 reanalysis were capable of capturing the key patterns of monthly and diurnal variations of surface ozone over China except for the western region, and MERRA-2 overestimated the observations compared to CAMS. Vertically, the CAMS profiles overestimated the ozone-sonde from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) above 200 hPa with the magnitude reaching up to 150 µg/m3, while little bias was found between the reanalysis and observations below 200 hPa. Intercomparison drawn from the vertical distribution between CAMS and MERRA-2 reanalysis showed that the negative bias appeared throughout the troposphere over China, while the positive bias emerged in the upper troposphere and lower stratosphere (UTLS) with high order of magnitude exceeding 100 µg/m3, indicating large uncertainties at higher altitudes. In summary, we concluded that CAMS reanalysis showed better agreement with the observations in contrast to MERRA-2, and the large discrepancy especially at higher altitudes between these two reanalysis datasets could not be ignored.  相似文献   

16.
CO2 utilizations are essential to curbing the greenhouse gas effect and managing the environmental pollutant in an energy-efficient and economically-sound manner.This paper seeks to critically analyze these technologies in the context of each other and highlight the most important utilization avenues available thus far.This review will introduce and analyze each major pathway,and discuss the overall applicability,potential extent,and major limitations of each of these pathways to util...  相似文献   

17.
Photocatalytic degradation was considered as a best strategy for the removal of antibiotic drug pollutants from wastewater. The photocatalyst of ABC (Ag2CO3/BiOBr/CdS) composite synthesized by hydrothermal and precipitation method. The ABC composite used to investigate the degradation activity of tetracycline (TC) under visible light irradiation. The physicochemical characterization methods (e.g. scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), ultraviolet visible spectroscopy (UV), photoluminescence (PL) and time resolved photoluminescence (TRPL) clearly indicate that the composite has been construct successfully that enhances the widened visible light absorption, induces charge transfer and separation efficiency of electron – hole pairs. The photocatalytic activity of all samples was examined through photodegradation of tetracycline in aqueous medium. The photocatalytic degradation rate of ABC catalyst could eliminate 98.79% of TC in 70 min, which is about 1.5 times that of Ag2CO3, 1.28 times that of BiOBr and 1.1 times that of BC catalyst, respectively. The role of operation parameters like, TC concentration, catalyst dosage and initial pH on TC degradation activity were studied. Quenching experiment was demonstrated that ·OH and O2· were played a key role during the photocatalysis process that was evidently proved in electron paramagnetic resonance (EPR) experiment. In addition, the catalyst showed good activity perceived in reusability and stability test due to the synergistic effect between its components. The mechanism of degradation of TC in ABC composite was proposed based on the detailed analysis. The current study will give an efficient and recyclable photocatalyst for antibiotic aqueous pollutant removal.  相似文献   

18.
In this study, the formation of iodinated trihalomethanes (I-THMs) was systematically evaluated and compared for three treatment processes - (i) chlorination, (ii) monochloramine, and (iii) dichloramination - under different pH conditions. The results demonstrated that I-THM formation decreased in the order of monochloramination > dichloramination > chlorination in acidic and neutral pH. However, the generation of I-THMs increased in the dichloramination < chlorination < monochloramination order in alkaline condition. Specifically, the formation of I-THMs increased as pH increased from 5 to 9 during chlorination and monochloramination processes, while the maximum I-THM formation occurred at pH 7 during dichloramination. The discrepancy could be mainly related to the stability of the three chlor (am) ine disinfectants at different pH conditions. Moreover, in order to gain a thorough insight into the mechanisms of I-THM formation during dichloramination, further investigation was conducted on the influencing factors of DOC concentration and Br/I molar ratio. I-THM formation exhibited an increasing and then decreasing trend as the concentration of DOC increased from 1 to 7 mg-C/L, while the yield of I-THMs increased with increasing Br/I molar ratio from 5:0 to 5:10. During the three processes mentioned above, similar I-THM formation results were also obtained in real water, which indicates that the excessive generation of I-THMs should be paid special attention during the disinfection of iodide-containing water.  相似文献   

19.
Dam reservoirs in headwater catchments, as critical zones for their proximity to terrestrial sources, play important roles in dissolved organic carbon (DOC) cycling. However, the effects of ecosystem metabolism (EM) on DOC cycling are not well known. Here, in-situ diurnal and monthly observations were conducted to measure EM (including gross primary production (GPP), ecosystem respiration (ER) and heterotrophic respiration (HR)), DOC turnover and CO2 emissions in a headwater catchment reservoir in Southeastern China in 2020. Our study showed the nocturnal CO2 emission rate was about twice as high as in daytime, and was strongly driven by EM. The values for DOC turnover velocity ranged from 0.10 to 1.59 m/day, and the average DOC turnover rate was 0.13 day−1, with the average removal efficiency of 12%. The contribution of respired DOC to daily CO2 emissions ranged from 17% to 61%. The accumulated efficiencies were estimated to be 13% for the selected 15 reservoirs throughout the Changjiang River network, corresponding to about 0.34 Tg C/year of the respired DOC. The modified CO2 flux was 0.75 Tg C/year, and respired DOC accounted for about 45% of total emitted CO2 from the 15 larger reservoirs. Our research emphasizes the necessity of incorporating the effects of EM into studies of reservoir DOC removal and CO2 emissions.  相似文献   

20.
Although disinfection byproducts(DBPs) in drinking water have been suggested as a cancer causing factor, the causative compounds have not yet been clarified. In this study, we used liquid chromatography quadrupole-time-of-flight spectrometry(LC-QTOF MS) to identify the unknown disinfection byproducts(DBPs) in drinking water produced from Taihu Lake source water, which is known as a convergence point for the anthropogenic pollutants discharged from intensive industrial activities in the surroundi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号