首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以厌氧污泥作为初始接种体,构建了单室微生物燃料电池(MFCs),考察了梯度驯化、直接驯化和间接驯化3种不同驯化方式对MFC降解苯酚及产电性能的影响。结果表明,MFC在闭路状态下对苯酚的降解速率比MFC在开路状态下的苯酚降解速率加快10%~20%,说明MFC在产电的同时,可加速苯酚的降解。当以600 mg/L的苯酚溶液为单一燃料,反应68 h后,3种驯化方式下的MFC对苯酚降解率都达到90%以上。相对于其他2种驯化方式,梯度驯化条件最有利于MFC产电性能的提高及苯酚的降解,其最大输出功率为31.3 mW/m2,降解速率提高了7%~20%。  相似文献   

2.
采用双室方形微生物燃料电池(MFC),以葡萄糖作为共基质,研究了共基质浓度对典型偶氮染料甲基橙在MFC阳极室中脱色效率及同步产电的影响。结果表明,在0~1.5 g/L浓度范围内,共基质浓度越大,甲基橙脱色率、COD去除率和最大输出电压越高。在共基质浓度为1.5 g/L,进水甲基橙为300 mg/L的条件下,8 h的脱色率高达95%,且在1 000Ω外电阻下,最大输出电压达到662 m V;在无共基质条件下,8 h内对300 mg/L甲基橙的脱色率仅为7.5%,最大输出电压仅达到140 m V。厌氧对照实验表明,甲基橙在MFC中可以实现加速脱色,反应8 h后甲基橙在MFC中的脱色率提高了57%。该研究为开发新型MFC降解偶氮染料废水技术提供了理论依据。  相似文献   

3.
以厌氧污泥为接种菌源,醋酸钠为阳极基质,分别构建了铁氰化钾和过硫酸铵为电子受体的双室微生物燃料电池(MFC),并研究了MFC在不同电子受体下的产电性能。结果表明,以铁氰化钾和过硫酸铵为电子受体的MFC最大稳定输出电压均随着电子受体浓度的升高而增大。当铁氰化钾质量浓度大于2.0g/L时,MFC最大稳定输出电压增幅不大。两种MFC的内阻均随电子受体浓度的增大而降低。阴、阳极溶液体积相等,外阻为5 000Ω时,以10.0g/L过硫酸铵为电子受体,MFC最大开路电压和最大输出功率密度分别为1 029.0mV和385mW/m3;以10.0g/L铁氰化钾作为电子受体,MFC最大开路电压和最大输出功率密度分别为711.8mV和73mW/m3,均小于以过硫酸铵为电子受体的最大开路电压和最大输出功率密度。因此,过硫酸铵是一种理想的电子受体,能够提高MFC产电性能。  相似文献   

4.
构建了以乙酸钠为阳极基质、Cu~(2+)为阴极电子受体的双室微生物燃料电池(MFC),考察了该MFC处理含铜废水的效果及Cu~(2+)浓度对MFC产电性能的影响。通过改变阴极液中CuSO_4的质量浓度(20~130mg/L),测试了MFC运行过程中的输出电压、输出功率密度、内阻、Cu去除率等指标。结果表明:Cu~(2+)可作为MFC的阴极电子受体;在外电路电阻为1 000Ω的条件下,Cu~(2+)质量浓度为130mg/L的MFC性能最佳,其稳定输出电压为0.33V、最大输出功率密度为114.42mW/m~2,内阻为231.62Ω,最高Cu去除率为84.59%;通过X射线衍射测试发现,阴极还原产物为Cu_2O。  相似文献   

5.
以城市污水处理厂的厌氧污泥为接种微生物,在外电阻为1900Ω下,采用双室微生物燃料电池(MFC)分别对以难降解的有毒有机物2,4-二氯苯酚(DCP),对硝基苯酚(PNP),对硝基苯酚和2,4-二氯苯酚为基质时进行有机物降解和产电性能的研究。实验结果表明以DCP(50 mg/L)为单一基质时,MFC的运行周期长达225 h左右,负载两端的最大电压值达393.7 mV,库仑效率为13.73%;而以PNP和DCP为混合基质时,PNP明显促进DCP的降解,使得DCP的去除率高达64.52%,同时PNP的去除率也达到94.47%。实验最终表明,MFC能够以2,4-二氯苯酚和对硝基苯酚为基质,在实现DCP和PNP降解的同时可稳定高效地向外输出电能。  相似文献   

6.
双室微生物燃料电池处理硝酸盐废水   总被引:3,自引:1,他引:2  
基于双室微生物燃料电池(microbial fuel cell,MFC),针对阴极分别接种活性污泥(A-MFC)和反硝化细菌(D-MFC),研究其产电情况和硝酸盐废水去除效果。结果表明,在产电的同时都可有效去除废水中的硝酸盐污染物。在外接电阻100Ω的情况下,2种MFC均具有良好的产电性能,A-MFC和D-MFC达到的最大输出电压分别为119.6 mV和117.2mV,最大功率密度分别为23.40 mW/m2和26.63 mW/m2;同时两者在阴极室的平均反硝化速率分别为1.86 mg/(L.d)和2.19 mg/(L.d),阳极室的平均COD去除率分别为81.9%和82.4%。另外,通过扫描电镜观察可知,A-MFC和D-MFC阴极碳布表面形貌存在差异,并且阳极与阴极碳布表面形貌差异显著。  相似文献   

7.
微生物燃料电池(MFC)的阳极对提高MFC产电性能有至关重要的影响。利用竹炭比表面积大、吸附能力强等特性,将其作为"三合一"膜电极MFC的阳极填充材料,通过增大阳极比表面积来提高其产电能力。实验结果表明,加入竹炭至阳极室后,MFC最高输出电压(外接电阻1 000Ω时)由0.280V增大到0.387V,提高了38.2%,并且输出电压更加稳定;而最大功率密度也由原来的0.22W/m3增大到1.42W/m3,同时内阻降低了80.85%(由235Ω降为45Ω);库仑效率由15.0%增大到25.6%。说明MFC阳极室填充竹炭可以显著促进MFC的产电性能。  相似文献   

8.
采用单室沉积型微生物燃料电池(SMFC)处理垃圾渗滤液与沉积污泥,考察电池的产电性能及污染物去除效果。SMFC输出电压呈周期性变化趋势,最大输出电压251 m V,最大功率密度为10.35 mW·m~(-2),功率密度随电流的增加先增大后减小,燃料电池内阻为2 653Ω。COD、氨氮去除率分别达96.18%和80.60%。SMFC的平均输出电压随污染物的降解呈波浪型上升趋势。MLSS、MLVSS去除率分别为24.40%和30.32%。实验结束后,MLVSS/MLSS的比值由0.70降至0.65,在SMFC产电过程中,污泥中的有机物得到有效降解。因此,SMFC可实现污水净化、污泥减量及产电一体化的效果。  相似文献   

9.
构建一种微生物燃料电池(MFC),首先将对氯酚在阴极室降解为苯酚,随后将阴极处理液在阳极室降解。研究了对氯酚废水经过阴阳双室分步处理后的去除效果和该MFC的产电性能,结果表明,在外电阻1 000Ω时,阴极脱氯阶段最大输出电压为216 m V,产电周期为132 h;阳极降解阶段最大输出电压为277 m V,产电周期为48 h,对氯酚的总去除率为96.2%。实验结果表明该MFC能较好处理对氯酚废水,且与传统的生化处理技术相比,有较大的优势。  相似文献   

10.
构建双室微生物燃料电池(MFC)装置,研究了分别以乙酸钠(NaAc)作单一燃料和乙酸钠+邻苯二甲酸酯(PAEs)作混合燃料条件下,MFC的产电性能及其对邻苯二甲酸酯的去除效果。结果显示,微生物燃料电池对邻苯二甲酸酯类废水的化学需氧量(COD)的总去除率可达89%~94%,对邻苯二甲酸酯的去除率均在70%以上。以2 g·L~(-1)NaAc+10 mg·L~(-1)PAEs作混合燃料时,MFC获得最大(面积)功率密度58.78 mW·m~(-2),电池内阻213.50Ω。实验结果表明,MFC能够利用高浓度邻苯二甲酸酯作燃料在实现高效降解的同时稳定地向外输出电能这为环境激素类难降解有机物的高效低耗处理提供了一种新的研究思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号