首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
针对包头市南郊污水处理厂污水污泥,采用先热解后对热解残渣进行气化的方法探讨城市污泥的有效利用方式。污泥热解实验取升温速率(20~60℃·min-1)和终温(400~600℃)作为影响因素,得出各热解产物产率的变化规律。结果表明,污泥热解在终温为600℃时失重率达到57.53%,焦油产率在450℃达到峰值。污泥残渣的气化分别以水蒸气和CO2作为气化剂,探讨了800~1 000℃范围内的气化产品气组分变化规律。以水蒸气为气化剂时,污泥热解残渣的可制备富氢产品气,产品气中H2体积分数随着反应温度的增加而增加,1 000℃时H2含量可达68.83%,H2+CO含量达到81.36%,低位热值为9.18 MJ·Nm-3。以CO2作为气化剂时,产品气中富含CO,温度越高CO含量越高,1 000℃时到达最大值53.84%,产品气低位热值为7.25 MJ·Nm-3。  相似文献   

2.
利用热重-傅里叶变换红外分析仪(TG-FTIR)对含油污泥与玉米秸秆共热解特性进行了研究,分析了各温度段的协同效应。TG分析表明,共热解主要呈现3个阶段:挥发分的析出(210~520 ℃)、碳酸盐的分解(600~780 ℃)、长链难分解重质油的热裂解和半焦的气化(900~1 100 ℃),且在不同热解阶段呈现出不同的协同效应。热解动力学分析表明,含油污泥与玉米秸秆共热解后,第1阶段的活化能有所增高,而第2、3阶段的活化能大幅降低。FTIR分析表明,第1、2阶段,共热解与单一物料热解的产物种类基本一致,而在第3阶段,共热解使含油污泥热解产物甲基化合物发生分解和转化。含油污泥与玉米秸秆共热解可促进CO2、CO、CH4和C=O化合物的析出,其中添加玉米秸秆质量分数为10%时,对CO2、CO和CH4析出的促进作用最强,添加30%时则对C=O化合物的析出更为有利。  相似文献   

3.
利用污泥热解-自源炭重整的方式获得高品质的燃气和油,为了实现更高的气、油转化率,在600 ℃的重整条件下,对比了污泥在450~600 ℃内不同热解温度下产生的热解挥发分利用自源炭催化重整后的气、油产量与特性,同时考察了自源炭生成方式的影响。研究结果表明,550 ℃下污泥热解产生的热解液产量最高,同时最容易被炭催化裂解,但是因积碳使得污泥转化为气、油的产率不高。600 ℃下热解产生的挥发分经过重整后获得最高的气体转化率与热值,但也存在积碳问题。与一步升温到600 ℃的热解炭相比,不同温度下的热解炭继续被加热到600 ℃所获得的分步热解炭更符合连续化操作要求,但其重整效果总体上不如前者好;而热解温度在450 ℃时例外,450 ℃的热解炭继续升温至600 ℃并重整450 ℃热解挥发分,能够获得最高的气、油产率并减少碳沉积。在实际情况下的热解-重整连续化操作中推荐热解温度为450 ℃以及重整温度为600 ℃,以获得高值产物并降低对热解装置的要求。  相似文献   

4.
以润滑油废白土为原料,利用电热解法,研究了热解终温、加热速率和CaO添加量对热解产物的影响。实验结果表明:热解终温对热解产物的影响最为显著。随着热解终温的升高,不凝气产量和产油率均迅速增加。当热解终温达到600℃时,其增加的速率逐渐缓慢增大。当控制热解终温为800℃、加热速率为16℃/min、CaO添加量为0.5%时,富氢气体产量为189.2 L/kg,气体中主要成分为H2和CH4,其含量分别为27.97%和41.64%;热解残渣含油率和重金属溶出物均低于标准规定值,热解油产率为10.98%,回收率为38.94%,其主要成分为汽油、柴油和重油3部分组成,分别含19.13%、31.35%和49.52%。  相似文献   

5.
以管式炉热解实验和热重分析为基础,研究了初始温度对废轮胎热解产率及气相产物特性影响。结果表明,初始温度对废轮胎的热解存在重要影响。热重分析结果表明,废轮胎的热解过程存在2个主要失重过程,第一失重温度区间为200~500℃,第二失重温度区间为650~800℃;升温速率仅改变了热解的最大失重速率,并未改变废轮胎最终热解失重率;可通过提高升温速率能够缩短热解反应时间。在初始温度低于100℃时,废轮胎在800℃时热解已基本结束;当终温为800℃、初始温度在100~550℃范围内时,随着初始温度的提高,固、气两相产物产率均提高,而液相产物产率降低;其中气相中H2、CO和CH4的含量高于初始温度小于100℃时的含量;分析认为,可以通过调节热解的初始温度调节废轮胎热解在不同热解阶段的时间分配,适当提高热解初始温度有利于提高整个热解过程中的时间利用效率、改变废轮胎热解产物的分布;废轮胎热解气化的最佳温度区间为500~800℃。  相似文献   

6.
废弃聚基丙烯酸甲醋(PMMA)的增长及无序堆放会对环境造成严重影响。流化床热裂解技术代表了PMMA处理技术的发展方向。在实验室规模的流化床热解装置上,对PMMA的原料特性、加热方式和温度等多因素对其热解的影响进行了研究。结果表明,PMMA的热解产物主要是气体和液体MMA,液体最大得率为91.8%。在400℃以上时,随着热解温度的升高,CO2和CO的含量增加,而MMA含量下降;采用流化气体预热方式或减小PMMA粒径的操作方式,有利于热解强度和液体产率的提高。  相似文献   

7.
生物质废弃物快速热解制取富氢气体的实验研究   总被引:2,自引:0,他引:2  
采用管式炉对红松锯屑快速热解制取富氢气体进行了实验研究,分析了反应器温度、物料粒径和催化剂对热解产物组成的影响.结果表明高温能加快生物质快速热解进程,减少炭和焦油生成量,利于富氢气体的生成,800℃时气态产物比例可达56.9 wt.%,气态产物中H2体积分数由4.3%(500℃下)上升至17.2%,H2 CO体积分数达68.3%.小粒径能增大热解气态产物的比例,但对气态产物组成的影响很小,这可能与红松锯屑本身质地疏松有关.以与生物质直接混合方式添加的煅烧白云石能使热解产物中H2含量增加,但造成产气过程变缓,炭生成量增多,富氢气体总产量未能得到提高.  相似文献   

8.
热解温度和时间对污泥生物碳理化性质的影响   总被引:2,自引:0,他引:2  
污泥热解制备生物碳是一种环境友好的污泥处理处置途径。重点考察了热解温度及时间等因素对生物碳品质的影响。污泥取自厦门某城市污水处理厂脱水污泥(初始含水率为80%),热解实验结果表明,随着热解温度的升高(从300~700℃),热解时间的增加(2~4 h),生物碳产率均下降;低温热解时(300℃),生物碳偏酸性,而高温热解时(700℃),生物碳偏碱性;生物碳N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提实验结果表明,高温热解能降低污泥生物碳中微量元素的有效性。  相似文献   

9.
为实现含油污泥的资源化利用,以罐底油泥为研究对象并以油回收率为考核指标,对热解终温对油泥三相产物的影响进行了研究。结果表明,最佳热解条件是:升温速率为10 ℃·min−1、载气中最佳氧气体积分数为4.2%。在400~800 ℃范围内,随着温度的升高,回收的热解油产率由16.43%提升至21.46%,后又降至14.15%;热解气产率由9.12%提升到了27.87%,热解残渣中可回收组分含量由39.1%降至16.5%。热解油中主要为轻质组分,油的品质较高;热解气中主要成分为CO2和CO,且温度越高可燃气比例越高。对热解残渣进行电镜分析发现,渣体表面没有结焦现象,残渣表现出良好的吸附性能。本研究可为含油污泥热解处理资源化提供参考。  相似文献   

10.
利用热重-红外(TG-FTIR)联用技术研究了典型市政污水污泥在CO2和N2气氛下的热解特性。基于TG-FTIR分析结果,采用等温模式配合法研究了CO2气氛下污泥固定床热解过程中CO和CH4的生成特性,建立了CO和CH4的生成动力学机理模型,并同传统N2气氛下污泥热解情况进行了对比,理论模型利用实际实验数据进行了验证分析。结果表明,在实验温度范围内2种气氛下CO与CH4的生成情况有着比较明显的差异,CO2气氛下CH4释放浓度在峰值和总量上都要低于N2气氛,CH4释放峰值来得更早,释放时间更为集中,释放过程也结束得更快。相反,CO的释放浓度峰值,总量以及持续时间在CO2气氛下都要远远高于N2气氛,随着温度的升高,差距越来越大,CO2的存在大大促进了CO的生成。经实验验证,理论推导所得的模型公式对于热解产物生成有着良好的预测结果。  相似文献   

11.
刘立群  张军  吴晓燕  田禹  张杰 《环境工程学报》2016,10(11):6622-6628
采用升温迅速的微波能作为热源,利用自主设计微波设备对含水率为82%(m/m)的湿污泥进行高温热解实验。采用单因素实验法,探究热解终温、停留时间、活性炭添加量对污泥热解生物气组分和含量的影响规律,确定连续式运行的最佳工况条件:热解终温900℃,停留时间50 min,活性炭添加比例为30%,热解功率1 600 W;在此基础上进行连续12 h微波高温热解实验,共热解污泥56 kg,产生生物气32.26 kg,热解油10.98 kg,固体残渣12.66 kg,产气转化率高达57.8%,生物气组分H2+CO含量高达67%,热解产物具有良好的工业利用价值。污泥热解生物气中H2S浓度超标10倍以上,而NH3浓度未超标,硫化氢的去除技术研究值得关注。  相似文献   

12.
为了促进城市污泥热解工艺的工程化应用,组建了污泥热解系统、热解产物分离回收利用系统、废气净化排放系统于一体较完整的热解中试装置,在实现污泥有效处置的同时也实现了高值能源回收利用。中试工况优化,较好工况为:热解时间30-40 min,热解终温450-500℃,在此条件下,干化污泥(含水率5%)减量率为50%;热值为33.8 MJ/kg的热解油产率为17.1%左右。通过对中试运行效果的评估,得出热解油和热解气两者能量或污泥炭自身能量可供干化污泥热解本身所需能量,从而为推动污水污泥热解工艺的工程化利用提供了支持。  相似文献   

13.
以市政污泥为原料,在300、400、500、600、700和800 ℃无氧气氛下,热解制备了污泥基生物炭。采用BET、SEM、XPS、FT-IR对不同热解温度下污泥炭进行了表征分析;研究了不同热解温度下污泥炭对污水中有机物的吸附效果和动力学;探究了热解温度对污泥炭微观调控下吸附实际水体中有机物的匹配机质。结果表明,随热解温度的升高,C—H、C—C结合比例降低,C=C、C—O=C比例升高,芳香化程度增加,且比表面积、孔容及表面粗超度均有所增加,1~2 nm微孔比例增多,介孔向微孔发展趋势逐渐明显。800 ℃热解温度条件下制备的污泥炭对二沉池出水中有机物的吸附效果优于其他温度下制备的污泥炭。吸附温度为298.15 K时,最大吸附容量为282.5 mg·g−1,且符合准二级吸附动力学。高温下制备的污泥炭对水体中腐殖酸和富里酸具有较强的吸附效能。这主要是由于表面丰富的含氧官能团、芳香键与腐殖酸和富里酸发生了氢键、化学键缔合作用和π-π共轭作用,同时污泥碳表面发达的孔隙结构和较大的比表面积也提供了更多的活性结合位点,促进了污染物的吸附。  相似文献   

14.
我国食用菌废菌棒产生量大,利用率低,对环境污染严重,需要妥善处理。为制备高品质能源,在500~800 ℃温度范围内快速热解废菌棒,分析产物特征,解析热解机理。热解温度从500 ℃上升到800 ℃时,废菌棒的热解气质量分数从18.44%上升到50.45%,焦油的质量分数从49.06%下降到23.72%,生物炭的质量分数维持在30%左右,废菌棒的质量减量化率超过2/3;同时,热解气中H2、CO、CH4含量均有上升,CO2含量下降;焦油组分向更稳定的苯系物转变;生物炭炭化效果增强。研究结果表明,700 ℃为最佳热解温度,经过120 s即可反应完全。高温可以破坏羟基的结构,使其发生脱氢反应,碳氢键较早断裂,伯碳和仲碳大量裂解并迁移至焦油和热解气中,羰基在高温下迅速断链。  相似文献   

15.
采用固定床反应器对脱水污泥在热解过程中N、P、K及重金属的迁移行为进行了研究,以期获得营养元素N、P、K含量较高、重金属含量较低的生物炭,将其作为土壤肥料。结果表明,污泥样品中N主要以铵盐-N、蛋白质-N、吡咯-N、吡啶-N 4种形态存在,其中吡咯-N占总氮的45.22%,热解后各组分在生物炭中所占比例发生变化,其中吡咯-N的减少较为明显,800℃的污泥炭中减少到3.24%。随着热解温度由400℃升高到800℃,N在污泥炭中的含量逐渐降低,气相中的含量明显增加,但液相中在600℃后减少;P和K几乎全部集中在污泥炭中,其中400℃污泥炭中的P主要以焦磷酸盐形式存在、800℃时则主要以偏磷酸盐存在;重金属在污泥炭中出现不同的富集,其富集程度顺序为:Cu>Ni、As>Pb、Cr> Zn> Cd。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号