共查询到20条相似文献,搜索用时 15 毫秒
1.
Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of heavy metal contaminants from soil components. In this study, copper sorption-desorption isotherms were obtained for clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. Acidic pecan shell-derived activated carbon and basic broiler litter biochar were employed in desorption experiments designed to address both leaching by rainfall and toxicity characteristics. For desorption in synthetic rain water, broiler litter biochar amendment diminished sorption-desorption hysteresis. In acetate buffer (pH 4.9), significant copper leaching was observed, unless acidic activated carbon (pHpzc = 3.07) was present. Trends observed in soluble phosphorus and zinc concentrations for sorption and desorption equilibria suggested acid dissolution of particulate phases that can result in a concurrent release of copper and other sorbed elements. In contrast, sulfur and potassium became depleted as a result of supernatant replacements only when amended carbon (broiler litter biochar) or soil (San Joaquin) contained appreciable amounts. A positive correlation was observed between the equilibrium aluminum concentration and initial copper concentration in soils amended with acidic activated carbon but not basic biochar, suggesting the importance of cation exchange mechanism, while dissolution of aluminum oxides cannot be ruled out. 相似文献
2.
William Hartley Nicholas M. Dickinson Nicholas W. Lepp 《Environmental pollution (Barking, Essex : 1987)》2009,157(10):2654-2662
Degraded land that is historically contaminated from different sources of industrial waste provides an opportunity for conversion to bioenergy fuel production and also to increase sequestration of carbon in soil through organic amendments. In pot experiments, As mobility was investigated in three different brownfield soils amended with green waste compost (GWC, 30% v/v) or biochar (BC, 20% v/v), planted with Miscanthus. Using GWC improved crop yield but had little effect on foliar As uptake, although the proportion of As transferred from roots to foliage differed considerably between the three soils. It also increased dissolved carbon concentrations in soil pore water that influenced Fe and As mobility. Effects of BC were less pronounced, but the impacts of both amendments on SOC, Fe, P and pH are likely to be critical in the context of As leaching to ground water. Growing Miscanthus had no measurable effect on As mobility. 相似文献
3.
Florido Mdel C Madrid F Madrid L 《Environmental pollution (Barking, Essex : 1987)》2011,159(2):383-390
A composted biosolid from wastewater treatment was added to soils of two public parks of Sevilla, and successive samples were taken during one year. In one of the parks, a second addition of biosolid was carried out after the first year. The soil contents in metals (pseudo-total) and their plant-available and oral bio-accessible fractions were significantly altered when the soils were amended with biosolid. Increase of the bio-accessible metal contents represents a deterioration of the environmental quality of recreational areas, where hand-to-mouth transfer of pollutants to children is likely to occur, although part of the metals added might be leached by rainfall or irrigation. The limits established in several countries for metal contents of soils in recreational areas are often exceeded after application of the biosolid. A careful study of the metal contents of recycled wastes is thus recommended before being used for green area maintenance. 相似文献
4.
Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting 总被引:17,自引:0,他引:17
A batch composting study was performed to evaluate the feasibility of co-composting sewage sludge with lime, aiming at reducing the availability of heavy metals in the sludge compost. Sewage sludge with sawdust as bulking agent was amended with lime at 0, 0.63, 1.0, and 1.63% w/w, and composted for 100 days in laboratory batch reactors. The changes in temperature, pH, electrical conductivity (EC), and extractable heavy metal contents were measured while compost maturity was determined by C/N(organic) and cress seed germination during the composting period. Liming raised pH of compost effectively at the initial stage of composting and caused a decrease in EC through precipitation of soluble ions. Lime amendment also significantly reduced water-soluble and Diethylene triamine pentracetic acid (DTPA)-extractable metal contents. The maximum reductions were 60 and 40% for Cu, 80 and 40% for Mn, 55 and 10% for Zn, and 20 and 25% for Ni at the end of the composting period for the lime-amended sludge as compared to the control. In spite of the inhibitory effect of lime amendment on the decomposition activity of sewage sludge, all treatments reached maturation after 63 days of composting as indicated by the results of C/N(organic) ratio and cress seed germination test results. A lime amendment of < or =1.0% is recommended to co-compost with sewage sludge. 相似文献
5.
Bioavailability in soil of organic xenobiotics such as phenanthrene is limited by mechanisms of diffusion of the xenobiotics within soil micropores and organic matter. The agricultural utilization of compost may reduce the risk connected to organic xenobiotic contamination by means of: (i) a reduction of the bioavailable fraction through an increased adsorption and (ii) an enhanced degradation of the remaining bioavailable fraction through an inoculum of degrading microorganisms. Aim of this work is to test this hypothesis by assessing the effects of compost amendment on the bioavailability and degradation of phenanthrene in soil. Experiments were carried out in both sterilized and non-sterilized conditions, and chemical and microbiological analyses were carried out in order to determine the extent of degradation and bioavailability and to monitor the evolution of the soil micro flora in time. Bioavailability was assessed in sterilized microcosms, in order to assess the physical effects of compost on aging processes without the influence of microbial degradation. Results showed that bioavailability is significantly reduced in soils amended with compost, although no differences were found at the 2 doses of compost studied. In non-sterilized soils the amount of phenanthrene degraded was always higher in the amended soils than in the non-amended one. Microbiological analyses confirmed the presence of a higher number of phenanthrene degraders in the amended soils and in samples of compost alone. These results suggest that compost induces the degradation in soils of easily degradable compounds such as phenanthrene, when the proper bacteria are in the compost; more resistant xenobiotics may instead be trapped by the compost organic matter, thus becoming less available. 相似文献
6.
Using biochar for remediation of soils contaminated with heavy metals and organic pollutants 总被引:23,自引:0,他引:23
Xiaokai Zhang Hailong Wang Lizhi He Kouping Lu Ajit Sarmah Jianwu Li Nanthi S. Bolan Jianchuan Pei Huagang Huang 《Environmental science and pollution research international》2013,20(12):8472-8483
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils. 相似文献
7.
Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations 总被引:3,自引:0,他引:3
The amendment of carbonaceous materials such as biochars and activated carbons is a promising in situ remediation strategy for both organic and inorganic contaminants in soils and sediments. Mechanistic understandings in sorption of heavy metals on amended soil are necessary for appropriate selection and application of carbonaceous materials for heavy metal sequestration in specific soil types. In this study, copper sorption isotherms were obtained for soils having distinct characteristics: clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. The amendment of acidic pecan shell-derived activated carbon and basic broiler litter biochar lead to a greater enhancement of copper sorption in Norfolk soil than in San Joaquin soil. In Norfolk soil, the amendment of acidic activated carbon enhanced copper sorption primarily via cation exchange mechanism, i.e., release of proton, calcium, and aluminum, while acid dissolution of aluminum cannot be ruled out. For San Joaquin soil, enhanced copper retention by biochar amendment likely resulted from the following additional mechanisms: electrostatic interactions between copper and negatively charged soil and biochar surfaces, sorption on mineral (ash) components, complexation of copper by surface functional groups and delocalized π electrons of carbonaceous materials, and precipitation. Influence of biochar on the release of additional elements (e.g., Al, Ca) must be carefully considered when used as a soil amendment to sequester heavy metals. 相似文献
8.
Mark Farrell William T. Perkins Gareth W. Griffith 《Environmental pollution (Barking, Essex : 1987)》2010,158(1):55-64
Soils contaminated with heavy metals can pose a major risk to freshwaters and food chains. In this study, the success of organic and inorganic intervention strategies to alleviate toxicity in a highly acidic soil heavily contaminated with As, Cu, Pb, and Zn was evaluated over 112 d in a mesocosm trial. Amelioration of metal toxicity was assessed by measuring changes in soil solution chemistry, metal leaching, plant growth, and foliar metal accumulation. Either green waste- or MSW-derived composts increased plant yield and rooting depth, reduced plant metal uptake, and raised the pH and nutrient status of the soil. We conclude that composts are well suited for promoting the re-vegetation of contaminated sites; however, care must be taken to ensure that very short-term leaching pulses of heavy metals induced by compost amendment are not of sufficient magnitude to cause contamination of the wider environment. 相似文献
9.
调理剂对堆肥产品重金属生物有效性的影响 总被引:1,自引:0,他引:1
城市污泥中重金属含量及其生物有效性是限制污泥农用的主要因素,因此,研究污泥堆肥化处理过程中重金属生物有效性,对污泥的农用具有重要意义。实验以城市污泥为原料,以菌菇渣和秸秆为调理剂,设置4个处理:A(污泥∶菌菇渣∶秸秆=1∶0.4∶0.025)、B(污泥∶菌菇渣∶秸秆=1∶0.3∶0.025)、C(污泥∶秸秆=1∶0.12)和D(污泥∶秸秆=1∶0.09),进行好氧堆肥实验,采用BCR顺序提取法测定各种形态的重金属,研究堆肥前后重金属形态的变化规律。结果表明,城市污泥中Cu、Ni、Pb和Cr主要以可氧化态及残渣态存在,生物有效性较低,而Zn和Cd主要以酸溶态和可还原态存在,生物有效性较高;堆肥过程显著降低了Cu、Zn、Ni和Pb的生物有效性,并改变了Cu、Zn、Ni、Pb、Cr和Cd的形态分布,使污泥中的Cu、Zn、Ni、Pb和Cd向着更稳定的可氧化态或残渣态转变;污泥经过堆肥处理后,Cu、Zn和Ni 3种重金属生物有效性关系为:ABCD,与其他处理相比,处理A残渣态的Pb和Cr增加比例较多,综合来看,处理A对重金属生物有效性的降低最为明显,重金属钝化效果最佳。 相似文献
10.
Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids 总被引:2,自引:0,他引:2
The effects of humic acids (HAs) extracted from two different organic materials on the distribution of heavy metals and on organic-C mineralisation in two contaminated soils were studied in incubation experiments. Humic acids isolated from a mature compost (HAC) and a commercial Spaghnum peat (HAP) were added to an acid soil (pH 3.4; 966 mg kg(-1) Zn and 9,229 mg kg(-1) Pb as main contaminants) and to a calcareous soil (pH 7.7; 2,602 mg kg(-1) Zn and 1,572 mg kg(-1) Pb as main contaminants) at a rate of 1.1g organic-C added per 100g soil. The mineralisation of organic-C was determined by the CO(2) released during the experiment. After 2, 8 and 28 weeks of incubation the heavy metals of the soils were fractionated by a sequential extraction procedure. After 28 weeks of incubation, the mineralisation of the organic-C added was rather low in the soils studied (<8% of TOC in the acid soil; <10% of TOC in the calcareous soil). Both humic acids caused significant Zn and Pb immobilisation (increased proportion of the residual fraction, extractable only with aqua regia) in the acid soil, while Cu and Fe were slightly mobilised (increased concentrations extractable with 0.1M CaCl(2) and/or 0.5M NaOH). In the calcareous soil there were lesser effects, and at the end of the experiment only the fraction mainly related to carbonates (EDTA-extractable) was significantly increased for Zn and decreased for Fe in the humic acids treated samples. However, HA-metal interactions provoked the flocculation of these substances, as suggested by the association of the humic acids with the sand fraction of the soil. These results indicate that humic acid-rich materials can be useful amendments for soil remediation involving stabilisation, although a concomitant slight mobilisation of Zn, Pb and Cu can be provoked in acid soils. 相似文献
11.
Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa 总被引:1,自引:0,他引:1
Ryegrass (Lolium perenne) and alfalfa (Medicago sativa) were planted in pots to remediate pyrene contaminated quartz sand (as a control group), alluvial and red soils amended with and without compost. The pyrene degradation percentages in quartz sand, alluvial soil, and red soil amended with compost (5%, w/w) and planted with ryegrass and alfalfa for 90 d growth were 98-99% and 97-99%, respectively, while those of pyrene in the corresponding treatments amended without compost but planted with ryegrass and alfalfa were 91-96% and 58-89%, respectively. Further, those of pyrene in the respective treatments amended with and without compost but unplanted were 54-77% and 51-63%, respectively. Pyrene contents in both roots and aboveground parts of ryegrass and alfalfa after 90 d growth in quartz sand and the two soils amended with or without compost were trace amounts. Statistical analyses for the parameters of ryegrass planted in red and alluvial soils including the concentrations of total water-soluble volatile low molecular weight organic acids, microbial population, pyrene degradation percentage, and spiked pyrene concentration show significant correlations at 5% and mostly 1% probability levels, by the analysis of variance. It was thus suggested that the interactions among the consortia of plant root exudates, microorganisms, and amended compost in rhizosphere soils could facilitate bioavailability of pyrene and subsequently enhance its dissipation. 相似文献
12.
Implications of rhizospheric heavy metals and nutrients for the growth of alfalfa in sludge amended soil 总被引:3,自引:0,他引:3
Rhizospheric distribution of nutrients and heavy metals in sludge amended soil was investigated using the rhizobag technique to give an indication of the release of metals from wastewater sludge. DTPA-extractable Zn, Cd, Ni and Mn, and available P, K and NH4+-N in the rhizosphere were markedly depleted when soil was amended with sludge. There was no conspicuous depletion or accumulation of DTPA-extractable Cu in the rhizosphere when the soil was amended with sewage sludge but DTPA-extractable Fe accumulated in the rhizosphere when the soil was amended with increasing amounts of sludge. The pH value in the rhizosphere increased with distance from the roots when soil was amended with larger amounts of sludge. The exchangeable fraction of Cu in the rhizosphere was depleted whether or not the soil was treated with sludge. Carbonate, oxide, organic and residual fractions of Cu and Zn were depleted in the rhizosphere at a distance of 0-2 mm from the roots when soil was amended with 50% sludge. Application of sewage sludge had a positive effect on alfalfa growth. With an increase in sludge amounts, the concentrations of Fe, Cu and Zn in alfalfa shoots did not change. Soil amendments with less than 25% sludge did not increase the availability or mobility of heavy metals. The depletion in rhizospheric DTPA-extractable Zn, Cd and Ni indicates that with the sole exception of Cu, release of metals from sludge amended soil was very limited. 相似文献
13.
Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar 总被引:2,自引:0,他引:2
Decamethylcyclopentasiloxane (D5) is a cyclic volatile methyl siloxane (cVMS) commonly found in commercially available products. D5 is expected to enter the terrestrial environment through the deposit of biosolids from sewage treatment plants onto agricultural fields for nutrient enrichment. Little to no information currently exists as to the risks of D5 to the terrestrial environment. In order to evaluate the potential risk to terrestrial organisms, the toxicity of a D5 contaminated biosolid in an agricultural soil was assessed with a battery of standardized soil toxicity tests.D5 was spiked into a surrogate biosolid and then mixed with a sandy loam soil to create test concentrations ranging from 0 to 4074 mg kg−1. Plant (Hordeum vulgare (barley) and Trifolium pratense (red clover)) and soil invertebrates (Eisenia andrei (earthworm) and Folsomia candida (springtail)) toxicity tests were completed to assess for lethal and sub-lethal effects. Plant testing evaluated the effects on seedling emergence, shoot and root length, and shoot and root dry mass. Invertebrate test endpoints included adult lethality, juvenile production, and individual juvenile dry mass (earthworms only). Soil samples were collected over time to confirm test concentrations and evaluate the loss of chemical over the duration of a test. The toxicity of the D5 was species and endpoint dependent, such that no significant adverse effects were observed for T. pratense or E. andrei test endpoints, however, toxicity was observed for H. vulgare plant growth and F. candida survival and reproduction. Chemical losses of up to 50% were observed throughout the tests, most significantly at high concentrations. 相似文献
14.
A study was done on the influence of redox potential on the mobility and availability of the various arsenic chemical forms in a Mollisol soil from central Chile amended with biosolid. Arsenic availability was strongly dependent on the applied redox potential. As expected, under reducing conditions (-200 mV vs Hg/Hg(2)Cl(2)) arsenic availability increased significantly, and arsenic was found mainly as arsenite. On the contrary under oxidizing conditions (200 mV vs Hg/Hg(2)Cl(2)) arsenic solubility decreased markedly and was governed by the presence of arsenate. The greatest concentration of organic arsenic species was found under reducing conditions, which would indicate that methylated species may participate in the transformation of arsenate to arsenite. In biosolid-amended soils the concentrations of methylated species increased as a function of time under reducing conditions, which can be attributed to the greater microbial activity resulting from the organic matter supply from the biosolid to soil. In all the systems, a high concentration of As(V) was found under reducing conditions, indicating that the chemical kinetics for the conversion of arsenate to arsenite is slow. Along time, the content of As(V) increased in the control soils, which may be attributed to the possible dissolution of iron oxides and hydroxides under reducing conditions. 相似文献
15.
大田条件下施加组配改良剂对蔬菜吸收重金属的影响 总被引:3,自引:0,他引:3
通过向湘南某矿区周边重金属污染的农田施加不同添加量(0、2、4和8 g/kg)的组配改良剂HS(海泡石+石灰石),分析农田土壤理化性质变化和土壤重金属及其交换态含量的影响、空心菜和辣椒可食部位和根部位重金属含量的影响。结果表明,施用2~8 g/kg组配改良剂HS能使2种蔬菜土壤pH值和CEC含量显著增加,使交换态重金属含量大幅降低,且不同程度地降低了空心菜和辣椒可食部位及根部位的重金属含量。与对照相比,空心菜和辣椒可食部位重金属Pb、Cd、Cu、Zn的降幅分别为:21.1%~47.5%、6.5%~31.0%、57.7%~80.0%、65.3%~92.0%和27.3%~74.5%、29.8%~62.0%、55.4%~76%、37.8%~77.1%;根部位的重金属含量也有明显降低。当添加量为8 g/kg时,2种蔬菜可食部位和根部位重金属含量降低幅度最大。由此可知,组配改良剂HS的施用对2种蔬菜吸收土壤重金属起到有效的抑制作用。 相似文献
16.
Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost 总被引:1,自引:0,他引:1
Sizmur T Palumbo-Roe B Hodson ME 《Environmental pollution (Barking, Essex : 1987)》2011,159(7):1852-1860
The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg−1 and 362 mgCu kg−1) and Pb/Zn mine (4550 mgPb kg−1 and 908 mgZn kg−1) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element. 相似文献
17.
Kei Asada Koki Toyota Taku Nishimura Jun-Ichi Ikeda Kaneaki Hori 《Journal of environmental science and health. Part. B》2013,48(4):285-292
Applying manure compost not only results in zinc accumulation in the soil but also causes an increase in zinc mobility and enhances zinc leaching. In this study, the physical and chemical characteristics of zinc, zinc profiles, and zinc balance were investigated to characterise the fate of zinc in fields where the quality and amount of pig manure compost applied have been known for 13 years. Moreover, we determined zinc fractionation in both 0.1 mol L?1HCl-soluble (mobile) and -insoluble (immobile) fractions. Adsorption of zinc in the soil was enhanced with increasing total carbon content following the application of pig manure compost. The 159.6 mg ha?1 year?1manure applied plot (triplicate) exceeded the Japanese regulatory level after only 6 years of applying pig manure compost, whereas the 53.2 mg ha?1 year?1 manure applied plot (standard) reached the regulatory level after 13 years. The zinc loads in the plots were 17.0 and 5.6 kg ha?1 year?1, respectively. However, 5.9 % and 17.2 % of the zinc loaded in the standard and the triplicate pig manure compost applied plots, respectively, were estimated to be lost from the plough layer. Based on the vertical distribution of mobile and immobile zinc content, a higher rate of applied manure compost caused an increase in the mobile zinc fraction to a depth of 40 cm. Although the adsorption capacity of zinc was enhanced following the application of pig manure compost, a greater amount of mobile zinc could move downward through the manure amended soil than through non manure-amended soil. 相似文献
19.
将有机固废经热解转化为生物炭,具有改良土壤、促进碳固定、钝化重金属等优点,但有机固废生物炭中被钝化重金属进入土壤后生物有效性尚不明确。采用盆栽方法评估了施用市政污泥、中药渣等典型有机固废生物炭对受纳土壤中重金属有效性及植物吸收、传输重金属的影响。结果表明,施用污泥炭、中药渣炭显著增加了土壤中As、Zn的化学提取有效态含量,从而降低了Cr、Pb有效态含量(P < 0.05),对Cd、Cu、Ni有效态含量也有不同程度的降低趋势;同时,抑制了除Zn以外As、Cd、Cr、Cu、Ni、Pb等6种重金属从土壤向植物的传输、累积,降幅最高达30%。中药渣炭联合污泥炭施用可进一步抑制7种重金属在植物地上部分以及除As、Cr外其他重金属在根中的吸收、累积。本研究结果可为评估有机固废生物炭土地利用的环境风险提供参考。 相似文献
20.
重金属与土壤微生物的相互作用及污染土壤修复 总被引:7,自引:1,他引:7
阐述了微生物与重金属间的相互作用 ,指出土壤重金属污染影响微生物活性、生物量 ,且重金属对微生物具有一定的生态毒性。可通过微生物的氧化 还原作用、生物吸附富集和溶解作用 ,达到修复重金属污染土壤的目的。 相似文献