首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors and sources affecting measurement uncertainty associated with monitoring metals in airborne particulate matter (PM) were investigated as part of the Windsor, Ontario Exposure Assessment Study (WOEAS). The assessment was made using co-located duplicate samples and a comparison of two analytical approaches: ED-XRF and ICP-MS. Sampling variability was estimated using relative percent difference (RPD) of co-located duplicate samples. The comparison of ICP-MS and ED-XRF results yields very good correlations (R2 ≥ 0.7) for elements present at concentrations that pass both ICP-MS and ED-XRF detection limits (e.g. Fe, Mn, Zn, Pb and Cu). PM concentration ranges (median, sample number) of 24-h indoor PM10 and personal PM10 filters, and outdoor PM2.5 filters were determined to be 2.2–40.7 (11.0, n = 48) μg m?3, 8.0–48.3 (11.9, n = 48) μg m?3, and 17.1–42.3 (21.6, n = 18) μg m?3, respectively. The gravimetric analytical results reveal that the variations in PM mass measurements for same-day sampling are insignificant compared to temporal or spatial variations: 92%, 100% and 96% of indoor, outdoor and personal duplicate samples, respectively, pass the quality criteria (RPD ≤ 20%). Uncertainties associated with ED-XRF elemental measurements of S, Ca, Mn, Fe and Zn for 24-h filter samples are low: 78%–100% of the duplicate samples passed the quality criteria. In the case of 24-h filter samples using ICP-MS, more elements passed the quality criteria due to the lower detection limits. These were: Li, Na, K, Ca, Si, Al, V, Fe, Mn, Co, Cu, Mo, Ag, Zn, Pb, As, Mg, Sb, Sn, Sr, Th, Ti, Tl, and U. Low air concentrations of metals (near or below instrumental detection limits) and/or inadvertent introduction of metal contamination are the main causes for excluding elements based on the pass/fail criteria. Uncertainty associated with elemental measurements must be assessed on an element-by-element basis.  相似文献   

2.
Results concerning the levels and elemental compositions of daily PM10 samples collected at four air quality monitoring sites in Palermo (Italy) are presented. The highest mean value of PM10 concentrations (46 μg m−3, with a peak value of 158 μg m−3) was recorded at the Di Blasi urban station, and the lowest at Boccadifalco station (25 μg m−3), considered as a sub-urban background station. Seventeen elements (Al, As, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Sr, U, V, Zn) were measured by ICP-MS. Al and Fe showed the highest concentrations, indicating the significant contribution of soil and resuspended mineral particles to atmospheric PM10. Ba, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V and Zn had higher concentrations at the three urban sampling sites than at the sub-urban background station. Besides soil-derived particles, an R-mode cluster analysis revealed a group of elements, Mo, Cu, Cr, Sb and Zn, probably related to non-exhaust vehicle emission, and another group, consisting of Ba, As and Ni, which seemed to be associated both with exhaust emissions from road traffic, and other combustion processes such as incinerators or domestic heating plants. The results also suggest that Sb, or the association Sb–Cu–Mo, offers a way of tracing road traffic emissions.  相似文献   

3.
This study presents the first detailed data on aerosol concentrations of trace metals (Cd, Pb, Cu, Zn, Cr, Mn, Fe and Al) at the SE Mediterranean coast of Israel, and assesses their sources and fluxes. Aerosol samples were collected at two sampling stations (Tel-Shikmona and Maagan Michael) along the coast between 1994 and 1997. Two broad categories of aerosol trace metal sources were defined; anthropogenic (Cd, Cu, Pb and Zn) and naturally derived elements (Al, Fe, Mn and Cr). The extent of the anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the average crustal composition (EFcrust). High values (median >100) were calculated for Cd, Pb and Zn, minor values for Cu and relatively low values (<10) for Fe, Mn and Cr. The crustal-derived elements exhibited a statistically significant seasonal pattern of higher concentrations during spring and autumn (e.g. Al concentrations in some cases during these periods were observed to be in excess of 1500 ng m−3). In the eastern Mediterranean basin crustal-dominated elements are enriched by 2–3 times while others (Cd and Pb) are comparable to the northwestern Mediterranean. The Pb : Cd ratios of ∼150 are higher than in coastal European sites (60–116) or emission materials (∼50). It is speculated that these differences are attributed mainly to the mixing of crustal material with local and European emissions. At present, it is impossible to quantify the latter two fractions. Back trajectory analysis and the subsequent categorization of two main aerosol populations, ‘European’ and ‘North Africa–Arabian’, exhibited a significantly different geochemical imprint on the aerosol chemical composition. ‘European’-derived air masses indicated significantly higher EFcrust values for Cd and Pb due to the greater anthropogenic character of the aerosol population, with a dilution by crustal material of this population leading to comparatively lower EFcrust values associated with the North African–Arabian air masses.  相似文献   

4.

The objective of this study was to assess the contamination level of potentially harmful elements (PHEs) in industrial soils and how this relates to environmental magnetism. Moreover, emphasis was given to the determination of the potential mobile fractions of typically “technogenic” metals. Therefore, magnetic and geochemical parameters were determined in topsoils (0–20 cm) collected around a chemical industry in Sindos Industrial Area, Thessaloniki, Greece. Soil samples were presented significantly enriched in “technogenic” metals such Cd, Pb, and Zn, while cases of severe soil contamination were observed in sampling sites north-west of the industrial unit. Contents of Cd, Cr, Cu, Ni, Pb, Mo, Sb, Sn, and Zn in soils and pollution load index (PLI) were highly correlated with mass specific magnetic susceptibility (χ lf). Similarly, enrichment factor (EF) and geoaccumulation index (I geo) for “technogenic” Pb and Zn exhibited high positive correlation factors with χ lf. Principal component analysis (PCA) classified PHEs along with the magnetic variable (χ lf) into a common group indicating anthropogenic influence. The water extractable concentrations were substantially low, while the descending order of UBM (Unified BARGE Method) extractable concentrations in the gastric phase was Zn > Pb > As > Cd, yet Cd showed the highest bioaccessibility (almost 95%).

  相似文献   

5.
In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations (≥1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km × 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution.  相似文献   

6.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

7.
Comparative biogeochemical studies performed on the same plant species in remote areas enable pinpointing interspecies and interregional differences of chemical composition. This report presents baseline concentrations of PAHs and trace elements in moss species Hylocomium splendens and Pleurozium schreberi from the Holy Cross Mountains (south-central Poland) (HCM) and Wrangell–Saint Elias National Park and Preserve (Alaska) and Denali National Park and Preserve (Alaska). Total PAH concentrations in the mosses of HCM were in the range of 473–2970 μg kg?1 (dry weight basis; DW), whereas those in the same species of Alaska were 80–3390 μg kg?1 DW. Nearly all the moss samples displayed the similar ring sequence: 3 > 4 > 5 > 6 for the PAHs. The 3 + 4 ring/total PAH ratios show statistically significant differences between HCM (0.73) and Alaska (0.91). The elevated concentrations of PAHs observed in some sampling locations of the Alaskan parks were linked to local combustion of wood, with a component of vehicle particle- and vapor-phase emissions. In HCM, the principal source of PAH emissions has been linked to residential and industrial combustion of coal and vehicle traffic. In contrast to HCM, the Alaskan mosses were distinctly elevated in most of the trace elements, bearing a signature of the underlying geology. H. splendens and P. schreberi showed diverse bioaccumulative capabilities of PAHs in all three study areas.  相似文献   

8.
Here we present a simple, economic method of identifying sources of small scale contamination by polycyclic aromatic hydrocarbons (PAHs). The method involves determining the concentrations of the contaminants in the terrestrial moss Pseudoscleropodium purum and consists of the following steps: i) testing for the existence of gradients of decreasing concentrations of PAHs in the moss in relation to distance from different emission sources; ii) measurement of the concentration of PAHs at 35 pairs of sampling sites, each separated by a distance of 1 km; iii) study of the distribution of the differences in concentration between these pairs of sampling sites and elimination of extreme values (affected by small scale sources of contamination); iv) characterization of normal distributions to determine the probability of the data being thus distributed; and v) testing the method in the surroundings of possible sources of small scale contamination by PAHs. The decrease in concentration of all of the compounds followed a steep gradient with increasing distance from the emission source; after elimination of the outliers, the distribution of the differences in concentration between the 35 pairs of sampling sites was normal for all compounds, except benzo(a)pyrene. Application of the method to 15 different types of industries provided satisfactory results and the method proved to be a very useful tool for monitoring and evaluating air quality.  相似文献   

9.
Particulate matter, including coarse particles (PM2.5–10, aerodynamic diameter of particle between 2.5 and 10 μm) and fine particles (PM2.5, aerodynamic diameter of particle lower than 2.5 μm) and their compositions, including elemental carbon, organic carbon, and 11 water-soluble ionic species, and elements, were measured in a tunnel study. A comparison of the six-hour average of light-duty vehicle (LDV) flow of the two sampling periods showed that the peak hours over the weekend were higher than those on weekdays. However, the flow of heavy-duty vehicles (HDVs) on the weekdays was significant higher than that during the weekend in this study. EC and OC content were 49% for PM2.5–10 and 47% for PM2.5 in the tunnel center. EC content was higher than OC content in PM2.5–10, but EC was about 2.3 times OC for PM2.5. Sulfate, nitrate, ammonium were the main species for PM2.5–10 and PM2.5. The element contents of Na, Al, Ca, Fe and K were over 0.8 μg m?3 in PM2.5–10 and PM2.5. In addition, the concentrations of S, Ba, Pb, and Zn were higher than 0.1 μg m?3 for PM2.5–10 and PM2.5. The emission factors of PM2.5–10 and PM2.5 were 18 ± 6.5 and 39 ± 11 mg km?1-vehicle, respectively. The emission factors of EC/OC were 3.6/2.7 mg km?1-vehicle for PM2.5–10 and 15/4.7 mg km?1-vehicle for PM2.5 Furthermore, the emission factors of water-soluble ions were 0.028(Mg2+)–0.81(SO42?) and 0.027(NO2?)–0.97(SO42?) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively. Elemental emission factors were 0.003(V)–1.6(Fe) and 0.001(Cd)–1.05(Na) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively.  相似文献   

10.
《Chemosphere》2007,66(11):2440-2448
Aerosol samples were collected from Kanazawa, Japan to examine the size distribution of 12 elements and to identify the major sources of anthropogenic elements. Key emission sources were identified and, concentrations contributed from individual sources were estimated as well. Concentrations of elements V, Ca, Cd, Fe, Ba, Mg, Mn, Pb, Sr, Zn, Co and Cu in aerosols were determined with ICP-MS. The results showed that Ca, Mg, Sr, Mn, Co and Fe were mainly associated with coarse particles (>2.1 μm), primarily from natural sources. In contrast, the elements Zn, Ba, Cd, V, Pb and Cu dominated in fine aerosol particles (<2.1 μm), implying that the anthropogenic origin is the dominant source. Results of the factor analysis on elements with high EFCrust values (>10) showed that emissions from waste combustion in incinerators, oil combustion (involving waste oil burning and oil combustion in both incinerators and electricity generation plants), as well as coal combustion in electricity generation plants were major contributors of anthropogenic metals in the ambient atmosphere in Kanazawa. Quantitatively estimated sum of mean concentrations of anthropogenic elements from the key sources were in good agreement with the observed values. Results of this study elucidate the need for making pollution control strategy in this area.  相似文献   

11.
In Brazil, sugar-cane crops are burned to facilitate harvesting, and this causes environmental pollution from the large amounts of smoke and soot that are released into the atmosphere. The smoke and soot contain numerous organic compounds such as PAHs. In this study, PM10 and PAH concentrations in the air of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugar-cane plantations) were determined during the harvest and non-harvest seasons. The sampling strategy included two campaigns in each season, with 20 samples per season. PM10 was collected using a Hi-vol sampler with Teflon? – coated glass fiber filters. PM10 ranged from 41 to 181 μg m?3 during the harvest season, and from 12 to 47 μg m?3 during the non-harvest season. The mean total concentration of PAHs was 2.5 ng m?3 (non-harvest season) and 11.6 ng m?3 (harvest season). In all sampling periods, the most abundant polycyclic aromatic hydrocarbons were phenanthrene and fluoranthrene, and the least abundant was anthracene. The cluster analysis of the total PAH concentrations for each day of sampling and the corresponding meteorological data suggested that the atmospheric concentration of PAHs was independent of the differences in the weather between the seasons. For both sampling seasons, the statistical treatment (PCA, Varimax rotation and HCA) indicated the presence of vehicle sources (diesel, gasoline, and natural-gas engines); but for the harvest season, the main source was attributed to sugar-cane burning. The data generated by this study indicated the burning of sugar-cane as the main contributor to the high levels of PAHs detected in samples during the sugar-cane harvest season.  相似文献   

12.
Size distribution and selected element concentrations of atmospheric particulate matter (PM) were investigated in the Venice Lagoon, at three sites characterised by different anthropogenic influence. The PM10 samples were collected in six size fractions (10-7.2, 7.2-3.0, 3.0-1.5, 1.5-0.95; 0.95-0.49 and <0.49 μm) with high volume cascade impactors, and the concentration of 17 elements (Al, As, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V, Zn) was determined by inductively coupled plasma quadrupole mass spectroscopy. More than 1 year of sampling activities allowed the examination of seasonal variability in size distribution of atmospheric particulates and element contents for each site.At all the stations, particles with an aerodynamic diameter <3 μm were predominant, thus accounting for more than 78% of the total aerosol mass concentration. The highest PM10 concentrations for almost all elements were found at the site which is more influenced by industrial and urban emissions. Similarity in size distribution of elements at all sites allowed the identification of three main behavioural types: (a) elements found mainly within coarse particles (Ca, Mg, Na, Sr); (b) elements found mainly within fine particles (As, Cd, Ni, Pb, V) and (c) elements with several modes spread throughout the entire size range (Co, Cu, Fe, K, Zn, Mn).Factor Analysis was performed on aerosol data separately identified as fine and coarse types in order to examine the relationships between the inorganic elements and to identify their origin. Multivariate statistical analysis and assessment of similarity in the size distribution led to similar conclusions on the sources.  相似文献   

13.
For the first time, the moss biomonitoring technique and inductively coupled plasma–atomic emission spectrometric (ICP-AES) analytical technique were applied to study multi-element atmospheric deposition in Albania. Moss samples (Hypnum cupressiforme) were collected during the summer of 2011 and September–October 2010 from 62 sites, evenly distributed over the country. Sampling was performed in accordance with the LRTAP Convention–ICP Vegetation protocol and sampling strategy of the European Programme on Biomonitoring of Heavy Metal Atmospheric Deposition. ICP-AES analysis made it possible to determine concentrations of 19 elements including key toxic metals such as Pb, Cd, As, and Cu. Cluster and factor analysis with varimax rotation was applied to distinguish elements mainly of anthropogenic origin from those predominantly originating from natural sources. Geographical distribution maps of the elements over the sampled territory were constructed using GIS technology. The median values of the elements in moss samples of Albania were high for Al, Cr, Ni, Fe, and V and low for Cd, Cu, and Zn compared to other European countries, but generally were of a similar level as some of the neighboring countries such as Bulgaria, Croatia, Kosovo, Macedonia, and Romania. This study was conducted in the framework of ICP Vegetation in order to provide a reliable assessment of air quality throughout Albania and to produce information needed for better identification of contamination sources and improving the potential for assessing environmental and health risks in Albania, associated with toxic metals.  相似文献   

14.
Emission of heavy metals, besides ozone and diesel-soot, is one of the most significant environmental problems caused by the existing transport systems. Emission arises from different parts of vehicles (tyres, brakes, exhausts) or running trains (rails, wheels, overhead cables, etc.). Various types of emission with their insufficiently known ways of spreading makes it difficult to estimate the risk and to realise effective counter-measures.Size-dependent sampling of aerosols with the virtual impactor technique of a dichotomous sampler (<2.5 μm, 2.5–10 μm) allows one to identify several aerosol components at the sampling locations and to reliably determine their relative proportions. Analyses of 30–40 elements from immission samplings at 12 places in and around Cologne are compared with specific patterns of elements from relevant emission sources. Moreover, taking into account the particle size, relative abundances of Zn, Mo, Cu and Sb can be estimated by assuming an average of around 30% of diesel-soot in the fine fraction, and ∼3% from an abraded tyre material together with ∼0.3% from rubbed off brake-linings in the coarse fraction. The assumption of 0.3% for brake-linings is based on the relative abundances of Cu and Sb which besides Cd are the most highly enriched. Since most brake-linings used in cars contain these elements in an unusually high quantity (5–20% Cu and 1–5% Sb) and are in very similar ratios as measured in the coarse fraction, Cu and Sb may be taken as quantitative tracers for the brake-lining component in the immission. The environmental interest in Sb arises mainly from the toxicological potential of the compounds Sb2S3 and Sb2O3.Other traffic related components could only be identified very close to the sources of emissions. Besides Pt from cars with catalysators and Cu emitted from overhead cables of trams, an As-enrichment from rusting rails, which segregates into fine particles because of shaking due to passing trains, was discovered.  相似文献   

15.
This study reports on the development and testing of a method of quantifying the uncertainties in concentration predictions by a complex photochemical grid model (PGM), using a modification of the basic Monte Carlo method (MCM). The computationally intensive aspects of applying a full MCM to hundreds of PGM inputs and model parameters is replaced by a highly restricted sampling approach that exploits the spatial persistence found in predicted concentration fields. The sampling approach to the MCM is being explored as an efficient approach to assess the uncertainty in the differences in predicted maximum ozone concentration between base case and control scenarios. The MCM is applied to several dozen surface cells, with the goal of sampling the spatial pattern of uncertainty in the PGM-predicted differences in surface ozone concentration fields between a pair of base and control scenarios. The uncertainty in model inputs and parameters is simulated using several types of stochastic models. These stochastic models are driven using Latin hypercube sampling (LHS) to generate a non-redundant ensemble of alternative model inputs. Preliminary testing of the sampled MCM approach was conducted using the UAM-IV PGM on the New York ozone attainment modeling domain for the 6–8 July 1988 ozone episode. One hundred alternative concentration estimates were generated for a base scenario and for control scenarios representing 50%, 10% and 5% reduction of NOx emissions. The upper and lower bounds of the concentration difference ensemble that define a 95% confidence range were spatially interpolated from 27 monitoring sites to the full (surface) modeling domain, using the field of zero uncertainty (ZU) concentration differences. For the 50% NOx control scenario, predicted increases in peak ozone concentration smaller than 20 ppb were generally not significant from zero. By contrast, predicted decreases in peak ozone greater than 10 ppb were usually significant. For a control scenario with a small 5% NOx reduction, predicted concentration differences and confidence intervals were much smaller, but predicted changes in peak ozone were significant at a number of sample cells.  相似文献   

16.
With the aim of optimizing protocols for sampling moss, pine and oak for biomonitoring of atmospheric contamination and also for inclusion in an Environmental Specimen Bank, 50 sampling units of each species were collected from the study area for individual analysis. Levels of Ca, Cu, Fe, Hg, Ni, and Zn in the plants were determined and the distributions of the concentrations studied. In moss samples, the concentrations of Cu, Ni and Zn, considered to be trace pollutants in this species, showed highly variable long-normal distributions; in pine and oak samples only Ni concentrations were log-normally distributed. In addition to analytical error, the two main source of error found to be associated with making a collective sample were: (1) not carrying out measurements on individual sampling units; and (2) the number of sampling units collected and the corresponding sources of variation (microspatial, age and interindividual). We recommend that a minimum of 30 sampling units are collected when contamination is suspected.  相似文献   

17.
A systematic method combining water and diluted-acid extractions has been developed for the manifold evaluation of soluble and insoluble fractions in ambient aerosol. The pre-washed regenerated cellulose membrane filter was used as a collection medium of a low-volume air sampler. The collection time of 7–14 days was required to obtain the sample amounts enough for the systematic analysis. Simple and efficient extraction procedures using the filtration of water and 0.1 M hydrochloric acid were recommended in order to obtain the information about the dissolution behaviors of various elements in the aerosol. Soluble components in both the extracts were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and ion chromatography (IC). These extraction procedures were also preferred to prepare thin-layer specimens suitable to the succeeding X-ray fluorescence spectrometry (XRF) for insoluble components. Elemental compositions of the extraction residues were conveniently determined by the XRF calibrated with thin-layer standard specimens prepared with activated carbon. The determination of the 17 representative elements (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Br, Pb) in these three fractions from an aerosol sample was performed rapidly within 4 h. The proposed systematic method was applied to PM2.5 and PM10 aerosol samples collected in Kofu City, Central Japan, and the enrichment behaviors of various elements and their source apportionment such as soil, anthropogenic substances and vehicle exhaust particulates could be demonstrated by the present method.  相似文献   

18.
The potential of alpine moss-sedge heath to recover from elevated nitrogen (N) deposition was assessed by transplanting Racomitrium lanuginosum shoots and vegetation turfs between 10 elevated N deposition sites (8.2-32.9 kg ha−1 yr−1) and a low N deposition site, Ben Wyvis (7.2 kg ha−1 yr−1). After two years, tissue N of Racomitrium shoots transplanted from higher N sites to Ben Wyvis only partially equilibrated to reduced N deposition whereas reciprocal transplants almost matched the tissue N of indigenous moss. Unexpectedly, moss shoot growth was stimulated at higher N deposition sites. However, moss depth and biomass increased in turfs transplanted to Ben Wyvis, apparently due to slower shoot turnover (suggested to result partly from decreased tissue C:N slowing decomposition), whilst abundance of vascular species declined. Racomitrium heath has the potential to recover from the impacts of N deposition; however, this is constrained by the persistence of enhanced moss tissue N contents.  相似文献   

19.
Elemental (S and N) and isotopic (δ34S and δ15N) contents in the moss Haplocladium microphyllum at urban, rural and forested sites in acid rain area of South China have been analyzed for comparisons to show whether they are different and can be effectively used to identify S and N sources of atmospheric deposition. Average moss S content at rural sites (0.29 ± 0.06%) was found to be in between those at urban (0.35 ± 0.05%) and forested (0.25 ± 0.04%) sites, which are significantly different. Average N contents of urban (2.60 ± 0.56%) and rural mosses (2.84 ± 0.77%) are not significantly different, while both are significantly different to that of forested mosses at most areas, indicating that the atmosphere over rural sites has been polluted by N as seriously as that over urban sites. Nitrogen supply, relative to S supply, was in excess of the requirement for protein synthesis, especially at rural and forested sites. Moss stable isotope signatures have been proven to be effective tools for deciphering atmospheric S and N sources at these sites. Through moss δ34S signatures, we found that atmospheric S at urban and forested sites was mainly from local coal combustion and domestic biomass burning, respectively, whereas northerly air masses contributed more S to forested sites. The relatively negative moss δ15N values (?7.5 ± 3.0, ?3.4 ± 2.1 and ?0.8 ± 2.1‰) demonstrated that the main form in the N deposition was NHx in these sites. More negative δ15N signatures in urban mosses (?7.5 ± 3.0‰) indicated the contribution of NH3 released from untreated city sewage and wastes, while relatively less negative δ15N for rural and forested mosses (3.4 ± 2.1 and ?0.8 ± 2.1‰) was largely derived from agricultural NH3.  相似文献   

20.
A study was undertaken to determine the use of a plasmid DNA scission assay to evaluate the causal relationships between particle oxidative capacity and physico-chemistry. Field emission scanning electron microscopy (FESEM), image analysis (IA) and inductively coupled plasma-mass spectrometry (ICP-MS) were employed to investigate the physico-chemical characteristics of indoor PM10 (particulate matter with an aerodynamic diameter of 10 μm or less) in Beijing, China. Six PM10 samples (indoor smoker's living room; indoor non-smoker's living room and kitchen; and outdoor Beijing city; winter versus summer) were selected to represent typical indoor Beijing PM10 environments that contain high particle mass. The PM10 collected from a kitchen and two smoker's homes had the lowest TD50 (toxic dosage of PM10 causing 50% plasmid DNA damage), being as low as 45 μg ml−1 (kitchen) and 100 μg ml−1 (living room), which suggests a high oxidative capacity, with the PM10 generated in kitchens appearing to be the most toxic. The indoor PM10 from the non-smoker's home and outdoor PM10 samples demonstrated high TD50 values and were deemed less bioreactive (i.e. caused limited DNA damage). FESEM observations revealed that four types of particle species were prevalent in Beijing indoor PM10; soot aggregates, minerals, coal fly ash and unknown fine particles. IA showed that higher percentages of soot and unknown fine particles were associated with the lower TD50 values, suggesting that soot and the unknown fine particles may be important components responsible for the observed plasmid DNA damage. The water-soluble trace elements were negatively correlated with the TD50 values, implying that the DNA damage may be attributed to the water-soluble fraction of the PM10. Water-soluble zinc revealed the best relationship with the TD50 values than other analyzed elements, signifying it may play a role in driving the oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号