首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Denys S  Gombert D  Tack K 《Chemosphere》2012,88(7):806-812
Fires might be the source of persistent organic pollutants (POPs) such as dioxins, furans (PCDD/Fs) and/or polychlorobiphenyls (PCBs) in the environment. In the perspective of defining legal responsibilities a thorough characterization of the impact of such an event should be carried out. However, such characterization is not easy as the environment integrates both local and diffuse sources of such molecules. Thus, a combined approach, which includes gathering field surveys, modeling and laboratory experiments, should be conducted. The objective of this work is to illustrate different approaches to give sufficient insight to determine the actual impact of wood fire on the environment. The work was carried out at the vicinity of a burnt down parcel. The fired material was a mixture of wood and PCB-contaminated soils as the site was a former pyralene-disposal site. Modeling, soil and lichen sampling and experimental combustion were carried out to delineate the contamination for each chemical and to define the area within the fire that was responsible for the environmental contamination. Concentrations of PCDD/F and PCBs were very high on the burnt plot. The combined approach determined that the furans were the predominant compounds in the smoke emitted by the fire. Based on this tracer, it was possible to demonstrate that in terms of environmental contamination of PCDD/F, the impact of the fire was restricted to a 2 km radius from the burnt down plot. For PCBs, no specific tracer was identified. In this case, the delineation of the impact could only be empirical, based on the total concentration of the chemicals.  相似文献   

2.
The chemical composition of the odors typical of fires has recently been deciphered. Basically the constituents are mixtures of acetophenone, benzyl alcohol, hydroxylated derivatives of benzaldehyde, methoxylated and/or alkylated phenols and naphthalene. This finding makes it possible to develop objective, practical analytic measurement methods for the burnt smell as a contribution to improving fire damage assessment and remediation monitoring. With the aid of an artificially produced burnt smell and a panel of testers the odor detection threshold of a test mixture was determined olfactometrically to 2 μg m−3. Using a defined burnt-smell atmosphere in a test chamber, analytical methods with active sampling, the adsorbents XAD 7 and TENAX TA, and GC/MS measurement were then optimized and tested with a view to being able to carry out sensitive quantitative measurement of burnt smells. A further practical method with particular application to the qualitative characterization of this odor is based on the use of a new SPME (solid-phase microextraction) field sampler with DVB/CAR/PDMS (divinylbenzene/Carboxen™/polydimethylsiloxane) fibers.  相似文献   

3.
《Environmental Forensics》2013,14(3):191-197
To determine whether polycyclic aromatic hydrocarbons (PAHs) in household soot were derived from the combustion of scrap wood or creosote that was impregnated in the wood (or some combination of both), the molecular composition and radiocarbon ( 14 C) content of the total carbon and several PAHs in the soot was investigated. The 5730-year half-life of 14 C makes it an ideal marker for identifying creosote-derived PAHs ( 14 C-free) versus those derived from the combustion of wood (contemporary 14 C). The 14 C abundance of phenanthrene, fluoranthene, pyrene, and retene was determined by accelerator mass spectrometry after solvent extraction and purification by preparative capillary gas chromatography. The molecular analysis (presence of retene and 1,7-dimethylphenanthrene) and bulk 14 C content (contemporary) of the soot indicated that wood combustion was a strong source of carbon to the soot. The 14 C of retene in two soot samples was also contemporary, indicating that it was derived from the combustion of the scrap wood. These results are consistent with previous work that has suggested that retene is an excellent marker of wood combustion. However, the 14 C content of phenanthrene, fluoranthene, and pyrene in one soot sample was much lower and revealed that these compounds had a mixed creosote and wood source. Using an isotopic mass balance approach, we estimate that 40 to 70% of phenanthrene, fluoranthene, and pyrene were derived from the combustion of the scrap wood. The results of this study show that molecular marker and bulk 14 C analysis can be potentially misleading in apportioning sources of every PAH, and that molecular-level 14 C analysis of PAHs can be a powerful tool for environmental forensics.  相似文献   

4.
Chemical and biological analyses were performed to characterize products of Incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenlc properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, seml-volatlle, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were Identified in either combustion emission samples or dlchloromethane washes of the used plastic. When mutagenlcity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/partlculate emissions, no toxic or mutagenlc effects were observed. However, organic extracts of the particulate samples were moderately mutagenlc. This mutagenlcity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds Identified In samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.  相似文献   

5.
The oxygenated species, massively produced in the energy production plants based on combustion processes, constitute one of the most numerous categories of hazardous air pollutants. Therefore, development of real time diagnostic tools are needed in order to study their formation during combustion processes and to reveal their presence both in the exhaust and in the atmosphere. In this work, oxygenated compounds were identified inside fuel-rich premixed ethylene/air flames by means of ultraviolet fluorescence spectroscopy with the support of qualitative chemical analysis of the sampled combustion gases.

Strong band progression, typical of aldehydic functionality, were recognized in fluorescence spectra (λexc=355 nm) measured in the early oxidation region of premixed flames varying the equivalence ratio from 3.0 up 21.6. Downstream of the oxidation region, spectroscopic signatures of pyrolytic species were found to prevail on those peculiar of oxygenated compound. The position and the extension of the two main flame zones were found to depend on the flame conditions (C/O ratio) due to the effect of the C/O ratio on the temperature history along the flame axis. This correlation was interpreted on the basis of the measured axial temperature profiles.  相似文献   


6.
利用吹扫捕集-GC/MS法对引起南宁市竹排冲河道水体黑臭的嗅味物质进行检测分析。结果表明,导致竹排冲水体黑臭的嗅味物质主要为苯系物、硫类化合物和氯苯类化合物,其中甲硫醚(相对含量1.70%)、二甲基二硫醚(相对含量3.19%)、甲基丙基二硫醚(相对含量6.11%)等挥发性有机物为竹排冲水体中的主要致嗅物质,是竹排冲水体嗅味产生的主要原因。  相似文献   

7.
The formation of cyano group-containing polycyclic aromatic compounds (cyanoarenes) and nitrogen-containing aromatic compounds (azaarenes) during combustion processes is described. The experiments were carried out by combustion of nitrogen containing polymers (nylon 6, polyacrylonitrile and polyamide) in a combustion chamber ,to simulate combustion processes of waste incineration plants. The result from experiments, in which only one nitrogen containing polymer was burnt, showed the formation of several cyanoarenes. We conclude that during combustion processes in which hydrogen cyanide is formed, air pollution by cyanoarenes and azaarenes (in ppb or ppm concentrations) may occur.  相似文献   

8.
The determination of the structure of carbon materials is an analytical problem that join the research scientific communities involved in the chemical characterization of heavy fuel-derived products (heavy fuel oils, coal-derived fuels, shale oil, etc.) and of carbon materials (polycyclic aromatic compounds, tar, soot) produced in many combustion processes.

The knowledge of the structure of these “difficult” fuels and of the carbon materials produced by incomplete combustion is relevant to research for the best low-environmental impact operation of combustion systems; but an array of many analytical and spectroscopic tools are necessary, and often not sufficient, to attempt the characterization of such complex products and in particular to determine the distribution of molecular masses.

In this paper the size exclusion chromatography using N-methyl-pyrrolidinone as eluent has been applied for the characterization of different carbon materials starting from typical carbon species, commercially available like polyacenaphthylene, carbon black, naphthalene pitch up to combustion products like soot and soot extract collected in fuel-rich combustion systems. Two main fractions were detected, separated and molecular weights (MWs) determined by comparison with polystyrene standards: a first fraction consisted of particles with very large molecular masses (>100 000 u); a second fraction consisted of species in a relatively small MW range (200–600 u). The distribution of these fractions changes in dependence on the carbon sample characteristics.

Fluorescence spectroscopy applied on the fractions separated by size-exclusion chromatography has been used and comparatively interpreted giving indications on the differences and similarities in chemical structure of such different materials.  相似文献   


9.
Yasuhara A  Katami T  Shibamoto T 《Chemosphere》2006,62(11):1899-1906
Polyvinylidene chloride (PVDC; polymer of 1,1-dichloroethylene) was combusted with paper in a well-controlled, small-scale incinerator at an average grate temperature of 700 °C, and then dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases were analyzed by gas chromatography/mass spectrometry. PVDC lowered the combustion temperature due to its less flammable character. The amount of total dioxins (PCDDs + PCDFs + coplanar-PCBs) formed in the exhaust gas was 58.0 ng/g of a combustion sample and its toxicity equivalency quantity (TEQ) value was 0.64 ng-TEQ/g. The amount of PCDDs formed in the sample ranged from 2.33 ng/g (Cl8-isomer) to 0.048 ng/g (Cl1-isomer). The lower the number of chloride, the less production of PCDDs. On the other hand, there was no relation between the number of chloride and PCDF formation. The amount of PCDFs formed in the sample ranged from 8.02 ng/g (Cl2-isomer) to 4.46 ng/g (Cl8-isomer). A polyvinylchloride (PVC) sample produced 207 ng/g of total dioxins and a PVDC sample produced 57.4 ng/g of total dioxins when they were combusted under the same conditions. An approximately equal composition of dioxin isomers was formed from PVDC and PVC samples. Paper was found to contribute to PCDF formation when it was combusted with plastics.  相似文献   

10.
Myers AL  Mabury SA  Reiner EJ 《Chemosphere》2012,87(9):1063-1069
Mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDD/PXDFs, X = Br, Cl) are formed through combustion processes, and may be more toxic than their corresponding chlorinated and brominated analogues. With 4600 potential congeners, limited analytical standards, and complex environmental matrices, PXDD/PXDFs present a significant analytical challenge. Gas chromatography tandem mass spectrometry (GC-MS/MS) offers both selectivity and sensitivity through multiple reaction monitoring of unique transitions in a novel approach to PXDD/PXDF congener identification. Method validation was performed through analysis of soil samples obtained from a recycling plant fire. Of the PXDD/PXDFs examined, monobromo-dichlorodibenzofuran was the most prevalent, ranging in concentration from 8.6 ng g−1 to 180 ng g−1. Dibromo-dichlorodibenzo-p-dioxin, a compound of toxicological concern, ranged from 0.41 ng g−1 to 10 ng g−1. Concentrations of PXDD/PXDFs were between 6% and 10% that of the corresponding polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDFs), with the exception of dibromo-dichlorodibenzo-p-dioxin concentrations, which were 36% that of tetrachlorodibenzo-p-dioxins. Higher levels of polybrominated PXDD/PXDFs may indicate a significant bromine source was present during combustion.  相似文献   

11.
In this study, ambient air samples from different atmospheric environments were examined for both PBDE and PCDD/F characteristics to verify that combustion is a significant PBDE emission source. The mean ± SD atmospheric PBDE concentrations were 165 ± 65.0 pg Nm−3 in the heavy steel complex area and 93.9 ± 24.5 pg Nm−3 in the metals complex areas, 4.7 and 2.7 times higher than that (35.3 ± 15.5 pg Nm−3) in the urban areas, respectively. The statistically high correlation (r = 0.871, p < 0.001) found between the atmospheric PBDE and PCDD/F concentrations reveals that the combustion sources are the most likely PBDE emission sources. Correspondence analysis shows the atmospheric PBDEs of the heavy steel and metals complex areas are associated with BDE-209, -203, -207, -208, indicative of combustion source contributions. Furthermore, the PBDEs in urban ambient air experience the influence of the evaporative releases of the commercial penta- and octa-BDE mixtures, as well as combustion source emissions. By comparing the PBDE homologues of indoor air, urban ambient air, and stack flue gases of combustion sources, we found that the lighter brominated PBDEs in urban ambient air were contributed by the indoor air, while their highly brominated ones were from the combustion sources, such as vehicles. The developed source identification measure can be used to clarify possible PBDE sources not only for Taiwanese atmosphere but also for other environmental media in other countries associated with various emission sources in the future.  相似文献   

12.
Here we show that combustion sources, including waste incinerators, metallurgical processes, power-heating systems and so on, are also important emitters of polybrominated diphenyl ethers (PBDEs) to the atmosphere. Geometric mean PBDE concentrations in the stack flue gases of the combustion sources ranged from 8.07 to 469 ng/Nm3. The sinter plants (24.7 mg/h), electric arc furnaces (EAFs) (11.3 mg/h) and power plants (50.8 mg/h) possessed the largest PBDE emission rates, which were several orders higher than those of the other reported sources. The occurrences of the PBDEs in the flue gases of the power plants and vehicles, as well as their PBDE concentrations statistically highly correlated with combustion-originated PCDD/Fs, revealing that PBDEs should be the products of combustion. The ranking of major PBDE emission sources in Taiwanese PBDE inventory for combustion sources was power plants (30.85 kg/year), vehicles (14.9 kg/year) and metallurgical processes (5.88 kg/year).  相似文献   

13.
Toxic chlorinated hydrocarbons (polychlorinated biphenyls, benzenes and dioxins and furans) and polyaromatic hydrocarbons were examined in combustion gas and deposited soot wipe samples from simulated house fires. Concentrations of these substances were high during the fires, the amounts of polychlorinated dioxins and furans (PCDD/Fs) in the combustion gas varying from 1.0 to >7.2 ng/m3 (I-TEQ) and those of polyaromatic hydrocarbons from 6.4 to 470 mg/m3. Thus large amounts of organic compounds may be released in house fires. As a result, there is a need for careful personal protection of fire-fighters and remediation workers against combustion gases during a fire and on contaminated surfaces after it.  相似文献   

14.
Rice hulls are widely burnt in agricultural fields in Asia because it is difficult to find other uses for them. Farmers burn rice hulls usually under incomplete combustion conditions to avoid accidental fires. In this study we investigated carbon gas emissions from rice hull fires at controlled wind speeds in a wind tunnel to clarify the effect of wind on such fires. Burning of the rice hulls resulted in relatively incomplete combustion: the ratio of [CO] to [CO2] was high, >0.2, except when burning occurred at high wind speeds. Distinct differences in the carbon ratios of emitted carbon gases (CO2, CO, CH4, and nonmethane volatile organic compounds [NMVOC]) were found between high and low wind speeds: at high wind speeds, flames were usually present, and the CO2 contribution to total carbon gases was higher; at low wind speeds, the NMVOC and CH4 contributions to total carbon gases were greater. Therefore, a compensatory relationship existed between NMVOC and CH4 and CO2. Additionally, the ratio of [consumed O2] to [CO2] was <1 during the smoldering phase of combustion and >1 during the charcoal phase, synchronous with changes in [CH4] and [NMVOC].  相似文献   

15.
1,2,5,6-Tetrabromocyclooctane (TBCO) is a commercial brominated flame retardant that is employed mainly as an additive in textiles, paints and plastics. Very little is known about its presence or behavior in the environment or its analysis. TBCO can exist as two diastereomers, the stereochemistries of which have not been previously reported. We have named the first eluting isomer, under HPLC conditions, as alpha-TBCO (α-TBCO) and the later eluting isomer as beta-TBCO (β-TBCO) when using an Acquity UPLC BEH C18 column with methanol/acetonitrile/water as the mobile phase. The structural elucidation of these two isomers was accomplished by 1H NMR spectroscopy, GC/MS, LC/MS and X-ray structure determinations. α-TBCO is (1R,2R,5S,6S)-1,2,5,6-tetrabromocyclooctane and β-TBCO is rac-(1R,2R,5R,6R)-1,2,5,6-tetrabromocyclooctane. As with some other brominated cycloaliphatic compounds, TBCO is thermally labile and the isomers easily interconvert. A thermal equilibrium mixture of α- and β-TBCO consists of approximately 15% and 85% of these isomers, respectively. Separation of the two diastereomers, with minimal thermal interconversion between them, is achievable by careful selection of GC-capillary column length and injector temperature. LC/MS analyses of TBCO also presents an analytical challenge due to poor resolution of the isomers on chromatographic stationary phases, and weak intensity of molecular ions (or major fragment ions) when using LC-ESI/MS. Only bromide ions were seen in the mass spectra. APCI and APPI also failed to produce the molecular ion with sufficient intensity for identification.  相似文献   

16.
Hsu JF  Guo HR  Wang HW  Liao CK  Liao PC 《Chemosphere》2011,83(10):1353-1359
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are unintentional byproducts of combustion and industrial processes. Firefighters face the risk of occupational exposure to PCDD/Fs. Congener-specific analyses of 17 PCDD/Fs were performed on 20 serum samples collected from firefighters and fire scene investigators, and four soot samples that had deposited on the surfaces of the fire helmets and were collected after the firefighters had fought fires. The PCDD/F concentrations on the helmets that were contaminated by being worn at the fire scenes were 63-285 times higher than those on a clean helmet. The median serum PCDD/F concentration of the 16 firefighters (12 pg WHO2005-TEQ g−1 lipid) was not different from those of the males from the general Taiwanese population (9.4 pg WHO2005-TEQ g−1 lipid). However, the median PCDD/F level in the four fire scene investigators (15 pg WHO2005-TEQ g−1 lipid) was higher than those in the male from the general Taiwanese population (Mann-Whitney U test, p < 0.01). Furthermore, the serum samples from the firefighters and fire scene investigators, and the soot samples from the fire scenes presented similarly distinctive PCDD/F profiles that had elevated proportions for 10 PCDF congeners. Limited data indicated that the fire scene investigators were occupationally exposed to PCDD/Fs at the fire scenes. We suggested that the firefighters were not occupationally exposed to PCDD/Fs at the fire scenes due to appropriate protection. However, the fire scene investigators may have had more occupational exposure to PCDD/Fs due to poor protection, and further research must be performed to confirm this.  相似文献   

17.
The work aims to characterise PCDDs/Fs in environmental matrices by high resolution gas chromatography coupled to low resolution quadrupole ion-trap mass spectrometry (GC-QITMS/MS). In particular, the study was mainly focused in different environmental samples such as sewage sludge, soils, and sediments and in combustion residues as fly ashes. Previous experiences have already detected and quantified PCDDs/PCDFs in all matrices studied. Moreover, isomer-specific analysis of 2,3,7,8-PCDDs/Fs compounds corroborated good correlation between GC-QITMS/MS and a well-established technique such as high resolution mass spectrometry (HRMS). Finally, QC measures included the participation in intercalibration exercises. Successful results were achieved using GC-QITMS/MS in the analysis of fly ashes, soils and sediment materials. In general, GC-QITMS/MS constitutes an interesting alternative for routine analysis of dioxins in such as matrices.  相似文献   

18.
Levels of PCDD/Fs were measured at four different sites in Zagreb, capital of Croatia. Also one sample was taken during spontaneously initiated open fire on a landfill and one sample where garden waste of unknown content was burnt. Over period 1997–2000, 28 samples were collected and levels ranged between 9 and 306 fg I-TEQ m−3, except in the sample collected during landfill fire. Air PCDD/F levels in Zagreb at four sites were different and the highest levels were observed in industrial area. Seasonal variation of levels is also evident with higher levels in winter than in summer. Our results show that PCDD/F levels in ambient air collected in Zagreb are at lower end of the published data range. In general, homologue profiles were quite similar for all locations, the concentration of PCDD homologues increased while the concentration of PCDF homologues decreased with increasing degree of chlorination. PCDD/F levels in the landfill fire sample was 13 200 fg I-TEQ m−3 which are much higher than levels in garden waste burning sample or in sample collected at industrial site. During landfill fire, the concentration of 2,3,7,8-TCDF becomes even higher than the concentration of OCDF and is equal to the concentration of 1,2,3,4,6,7,8-HpCDF.  相似文献   

19.
Biomass quantities at three different sites in tropical moist mixed secondary deciduous forests before and after burning have been quantified in the forest patches cleared for shifting cultivation purposes. The main objective of the experiments was to study the spatial variability in the amount of biomass burnt and the contribution of different components viz., bole, branch, and mixed leaf litter in the burning process affecting the combustion factors. Species composition at the three sites varied with respect to each other. The total density of species before burning at the three sites for more than 10 cm diameter were found to be 3192 (site 1), 1194 (site 2) and 1444 (site 3) stems/area, respectively. Analysis of the results from girth-class and density relationships suggests that nearly 80% of the stems occurred in the range from 10–40 cm girth for site one, 64.2% in 10–55 cm girth class for the site two and more than 80% of stems in 10–40 cm girth class for the site three, indicating very poor and secondary nature of the forest. The fire intensity is found to be high for site one with 60 847 kJ s−1 m−1, when compared to 31 086 and 42 789 kJ s−1 m−1 for second and third sites, respectively. The values are comparatively higher than the mean value of 2566 kJ s−1 m−1 reported for savanna fires. The individual combustion completeness suggested that among the different components of biomass, branch material with less than 10 cm and upto 5 cm dbh contributed to more than 60% of combustion. Mixed leaf litter contributed to about more than 50% of individual combustion completeness at all the sites, with third site having the highest (84%). The contribution of dry biomass material having more than 70 cm diameter is found to be very low indicating that most of the trunks were burnt superficially. The overall combustion completeness suggested that mixed leaf litter and branch material contributed to most of the combustion. Of all the three sites, site three had been found to be having highest combustion completeness of about 30.04% when compared to 20.18% and 16.1% for first and second sites, respectively. In the study, comparison of combustion factors for different vegetation types has also been made.  相似文献   

20.
The objective of this study was to investigate the organic composition of wood smoke emissions and ambient air samples in order to determine the wood smoke contribution to the ambient air pollution in the residential areas. From November 2005 to March 2006 particle-phase PM10 samples were collected in the residential town Dettenhausen surrounded by forests near Stuttgart in southern Germany. Samples collected on pre-baked glass fibre filters were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). 21 polycyclic aromatic hydrocarbons (PAH) including 16 USEPA priority pollutants, different organic wood smoke tracers, primarily 21 species of syringol and guaiacol derivatives, levoglucosan and its isomers mannosan, galactosan and dehydroabietic acid were detected and quantified in this study. The concentrations of these compounds were compared with the fingerprints of emissions from hardwood and softwood combustion carried out in test facilities at Universitaet Stuttgart and field investigations at a wood stove during real operation in Dettenhausen. It was observed that the combustion derived PAH was detected in higher concentrations than other PAH in the ambient air PM10 samples. Syringol and its derivatives were found in large amounts in hardwood burning but were not detected in softwood burning emissions. On the other hand, guaiacol and its derivatives were found in both softwood and hardwood burning emissions, but the concentrations were higher in the softwood smoke compared to hardwood smoke. So, these compounds can be used as typical tracer compounds for the different types of wood burning emissions. In ambient air samples both syringol and guaiacol derivatives were found which indicates the wood combustion contribution to the PM load in such residential areas. Levoglucosan was detected in high concentrations in all ambient PM10 samples. A source apportionment modelling, Positive Matrix Factorization (PMF) was implemented to quantify the wood smoke contribution to the ambient PM10 bound organic compounds in the residential area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号