首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Oxidation of TNT by photo-Fenton process   总被引:4,自引:0,他引:4  
Liou MJ  Lu MC  Chen JN 《Chemosphere》2004,57(9):1107-1114
A series of photo-Fenton reactions have been performed for the degradation of 2,4,6-trinitrotoluene (TNT) in a 4.2-l reactor. The degradation reaction rate of TNT followed a pseudo-first-order behavior; and the rate constants for 2.4mW cm(-2)UV only, 2.4mW cm(-2)UV/H(2)O(2), Fenton, photo-Fenton (2.4mW cm(-2)) and photo-Fenton (4.7mW cm(-2)) were 0.002min(-1), 0.007min(-1), 0.014min(-1), 0.025min(-1) and 0.037min(-1), respectively. Increasing the intensity of UV light, and the concentrations of ferrous ions and hydrogen peroxide promoted the oxidation rate under the experimental conditions in this study. The weighting factor (f), the Fe(II)-promoted efficiency (r) and the promoted-UV light efficiency (p) were calculated to clarify their effects on the TNT oxidation. Moreover, the inhibition effect of hydroxyl radical was also observed in both Fenton and photo-Fenton oxidation when the concentration of Fe(II) were higher than 2.88mM. Solid phase micro-extraction was first applied to the separation of the organic byproducts from TNT oxidation. GC/MS was employed to identify the byproducts during the Fenton and photo-Fenton oxidation of TNT. These compounds were clarified as 1,3,5-trinitrobenzene, 1-methyl-2,4-dinitrobenzene 2,5-dinitrobenzoic acid and 1,3-dinitrobenzene. By these byproducts, the mechanisms of the methyl group oxidation, decarboxylation, aromatic ring breakage, and hydrolysis can be recognized and demonstrated. The pathway of TNT oxidation by photo-Fenton process was also proposed in this study.  相似文献   

2.
Two compounds, 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) are the main ingredients in a suite of explosive formulations that are being, or soon will be, fielded at military training ranges. We aim to understand the dissolution characteristics of DNAN and NTO and three insensitive muntions (IM) formulations that contain them. This information is needed to accurately predict the environmental fate of IM constituents, some of which may be toxic to people and the environment. We used Raman spectroscopy to identify the different constituents in the IM formulations and micro computed tomography to image their three-dimensional structure. These are the first three-dimensional images of detonated explosive particles.  相似文献   

3.
Cast iron has been used as a reactive material in permeable reactive barriers (PRBs) for site remediation. While reactions are generally believed to occur on the iron (oxide) surface, a recent study by [Oh, S.Y., Cha, D.K., Chiu, P.C., 2002a. Graphite-mediated reduction of 2,4-dinitrotoluene with elemental iron. Environ. Sci. Technol. 36 (10), 2178-2184] showed that graphite inclusions in cast iron can also serve as reaction sites for 2,4-dinitrotoluene (DNT). These authors also found that graphite-mediated reduction of DNT has a regioselectivity that is different from that for iron surface. In this study, we quantified the observations reported by Oh et al. and examined the role of graphite in cast iron through numerical modelling. Models containing one and two reaction sites were developed to evaluate the mass transfer, sorption and reaction rates for DNT reduction in batch systems containing high-purity and cast iron. Our simulations showed that the regioselectivity, defined as the ratio of the ortho- and para-nitro reduction rate constants, was 0.37+/-0.04 S.E. (S.E.=one estimated standard error) for iron surface and 3.59+/-0.76 S.E. for graphite surface. In the cast iron-water system, we estimated that at least 66+/-2% S.E. of the DNT was reduced on graphite surface, despite the low graphite content and the lower DNT reduction rate with graphite than with iron. Graphite played such an important role because of the rapid adsorption of DNT to graphite. In the batch experiments conducted by Oh et al., external mass transfer was not rate limiting. Surface reaction was the rate-limiting step for DNT reduction on the graphite surface in cast iron, whereas internal mass transfer and/or adsorption and surface reaction were important for high-purity iron.  相似文献   

4.
Yardin G  Chiron S 《Chemosphere》2006,62(9):1395-1402
The technical feasibility and performances of coupling flushing abilities of cyclodextrin solutions for 2,4,6-trinitrotoluene (TNT) removal from contaminated soil and the ability of Photo-Fenton treatment for final disposal of soil extract solutions containing high TNT loads have been investigated at laboratory scale. Methylated-beta-cyclodextrin (MCD) has shown better ability than hydroxypropyl-beta-cyclodextrin (HPCD) to complex TNT. The MCD solution increased the aqueous concentration of TNT in soil extract effluents as much as 2.1 times the concentrations obtained during the water flush of the soil. TNT in soil extract solution has been treated by Photo-Fenton. Our results indicate that MCD has a beneficial effect on the degradation rates of TNT. This relative improvement of TNT degradation rate (1.3 time) in presence of high amounts of hydroxyl radical scavengers can be ascribed to the formation of a ternary complex (TNT-cyclodextrin-iron) which can direct hydroxyl radical reaction toward TNT. Complete mineralization of soil extraction solutions was not achieved and TNT degradation pathway has been elucidated in order to ensure that no potential toxic intermediate is left at the end of the treatment time. After successive TNT hydroxylations, oxidative opening of the TNT aromatic ring quickly occurred, leading to the accumulation of short chain carboxylic acids such as oxalic acid and formic acid.  相似文献   

5.
Soils contaminated with 2,4,6-trinitrotoluene (TNT) and TNT primary reduction products have been found to be toxic to certain soil invertebrates, such as earthworms. The mechanism of toxicity of TNT and of its by-products is still not known. To ascertain if one of the TNT reduction products underlies TNT toxicity, we tested the toxicity and bioaccumulation of TNT reduction products. 2-Amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) were tested separately in adult earthworms (Eisenia andrei) following a 14-d exposure to amended sandy loam forest soil. TNT, 4-ADNT, and 2-ADNT were lethal to earthworms (14-d LC(50) were: 580, 531 and 1088 micromol kg(-1), or 132, 105 and 215 mgkg(-1) dry soil, respectively) and gave the following order of toxicity: 4-ADNT>TNT>2-ADNT. Exposure to 2,4-DANT and to 2,6-DANT caused no mortality at 600 micromol kg(-1) or 100 mgkg(-1) dry soil. We found that all four TNT reduction products accumulated in earthworm tissues and 2-ADNT reached the highest levels at 3.0+/-0.3 micromol g(-1) tissue. The 14-d bioaccumulation factors were 5.1, 6.4, 5.1 and 3.2 for 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-DANT, respectively. Results also suggest that some TNT metabolites are at least as toxic as TNT and should be considered when evaluating the overall toxicity of TNT-contaminated soil to earthworms.  相似文献   

6.
Chen WS  Liang JS 《Chemosphere》2008,72(4):601-607
Oxidative degradation of dinitrotoluene (DNT) isomers and 2,4,6-trinitrotoluene (TNT) in spent acid was conducted by Electro-Fenton's reagents. The electrolytic experiments were carried out to elucidate the influence of various operating parameters on the performance of mineralization of total organic compounds (TOC) in spent acid, including reaction temperature, dosage of oxygen, sulfuric acid concentration and dosage of ferrous ions. It deserves to note that organic compounds could be completely destructed by Electro-Fenton's reagent with in situ electrogenerated hydrogen peroxide obtained from cathodic reduction of oxygen, which was mainly supplied by anodic oxidation of water. Based on the spectra analyzed by gas chromatograph/mass spectrometer, it is proposed that initial denitration of 2,4,6-TNT gives rise to formation of 2,4-DNT and/or 2,6-DNT, which undergo the cleavage of nitro group into o-mononitrotoluene, followed by denitration to toluene and subsequent oxidation of the methyl group. Owing to the removal of both TOC and partial amounts of water simultaneously, the electrolytic method established is potentially applied to regenerate spent acid from toluene nitration processes in practice.  相似文献   

7.
Cyclodextrins (CDs) possess a hydrophilic external surface and a hydrophobic cavity. They are thus highly soluble and, in the meantime, effectively form inclusion complexes with hydrophobic organic compounds to enhance their solubilities. In this study, the complexation between modified beta-CDs and the herbicide diclofop-methyl (DM), (2-(4-(2,4-dichlorophenoxy)-phenoxy) propionate), was investigated. The complexation was confirmed by the shifts in the wavelengths of maximum ultra violet (UV) absorption and fluorescence excitation/emission. The deuterium isotope effects indicate that in the presence of beta-CDs the solubility of DM was lower while that of diclofop was higher in D2O than in H2O, suggesting the primary role of hydrophobic interactions in complexation. The solubility of DM was enhanced in the presence of beta-CDs, the extent of which depended on the modification of beta-CDs. The complexation reduced the hydrolysis of DM and hence increased its stability. The small inconsistency in the power of beta-CDs between hydrolysis retardation and solubilization suggests that hydrolysis was affected by the properties of beta-CDs and the configuration of DM in the complexes. Use of beta-CDs may thus result in the mobilization of soil DM. Properly modified beta-CDs may be utilized as formulation additives for improved delivery of DM and for enhanced environmental remediation.  相似文献   

8.
Liang HC  Li XZ  Yang YH  Sze KH 《Chemosphere》2008,73(5):805-812
In this study, the highly-ordered TiO(2) nanotube (TNT) arrays on titanium sheets were prepared by an anodic oxidation method. Under UV illumination, the TNT films demonstrated the higher photocatalytic activity in terms of 2,3-dichlorophenol (2,3-DCP) degradation in aqueous solution than the conventional TiO(2) thin films prepared by a sol-gel method. The effects of dissolved oxygen (DO) and pH on the photocatalytic degradation of 2,3-DCP were investigated. The results showed that the role of DO in the 2,3-DCP degradation with the TNT film was significant. It was found that 2,3-DCP in alkaline solution was degraded and dechlorinated faster than that in acidic solution whereas dissolved organic carbon removal presented an opposite order in dependence of pH. In the meantime, some main intermediate products from 2,3-DCP degradation were identified by a (1)H NMR technique to explore a possible degradation pathway. A major intermediate, 2-chlororesorcinol, was identified from the 2,3-DCP decomposition as a new species compared to the findings in previous reports. Photocatalytic deactivation was also evaluated in the presence of individual anions (NO(3)(-), Cl(-), SO(4)(2-), and H(2)PO(4)(-)). The inhibition degree of photocatalytic degradation of 2,3-DCP caused by these anions can be ranked from high to low as SO(4)(2-)>Cl(-)>H(2)PO(4)(-)>NO(3)(-). The observed inhibition effect can be attributed to the competitive adsorption and the formation of less reactive radicals during the photocatalytic reaction.  相似文献   

9.
Chen WS  Juan CN  Wei KM 《Chemosphere》2005,60(8):1072-1079
Fenton's reagent, UV/H2O2 and UV/Fenton's reagent were employed to mineralize dinitrotoluene (DNT) isomers and 2,4,6-trinitrotoluene (TNT) of spent acid in toluene nitration process. The bench-scale experiments were conducted to elucidate the influence of various operating variables on the performance of removal of total organic compounds (TOC) from spent acid, including reaction temperature, concentration of ferrous ion and H2O2 dosage. It is remarkable that organic compounds were completely mineralized by Fenton oxidation, of which removal efficiency is superior to that of UV/H2O2. Nevertheless, it makes slight difference between Fenton oxidation and UV/Fenton oxidation. According to the spectra identified by gas chromatograph/mass spectrometer (GC/MS), it is proposed that oxidative degradation of DNT isomers leads to o-, m-, p-mononitrotoluene (MNT) and 1,3-dinitrobenzene respectively. Besides, the oxidation of 2,4,6-TNT gives the 1,3,5-trinitrobenzene intermediate. Apparently, Fenton oxidation is promising for purification of spent acid industrially.  相似文献   

10.
Glutathione S-transferase (GST) and peroxidase (POX) activities have a direct relation to the effect of stress on plant metabolism. Changes in the activities of the enzymes were therefore studied. Horseradish hairy roots were treated by selected bivalent ions of heavy metals (HMs) and nitroaromatic compounds (NACs). We have shown differences in GST activity when assayed with substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB). The conjugation of DCNB catalysed by GST was inhibited in all roots treated with HMs as compared to non-treated roots, whereas NACs caused induction of the activity in dependence on the exposition time and concentration of compounds. The conjugation of CDNB by GST was not affected to the same extent. The increase of GST activity was determined in cultures treated by nickel (0.1 mM) and diaminonitrotoluenes (DANTs, 0.1 mM) for 6 h, whereas the roots treated by 2,4,6-trinitrotoluene (TNT), 4-amino-2,6-dinitrotoluene (ADNT) and dinitrotoluene (DNT, 1.0 mM) needed 27 h treatment to induce the activity. The POX activity of cultures treated by HMs was inhibited to 17-35% in comparison to non-treated cultures. The POX activity of roots treated by TNT (0.1 and 1.0 mM) for 6 and 27 h and by ADNT (0.1 and 1.0 mM) for 6 h was inhibited. A partial increase of POX activity was measured in roots treated by all NACs for 27 h. The content of oxidized glutathione (GSSG) and reduced glutathione (GSH) in the roots differed significantly. It was followed as a symptom of the stress reaction of the plant metabolism to the effect of NACs and HMs.  相似文献   

11.
Water extracts of soil samples of the former ammunition plant “Tanne” near Clausthal-Zellerfeld, Lower Saxony, Germany, were investigated for highly polar oxidized 2,4,6-trinitrotoluene (TNT) metabolites. 0.4 to 9.0 mg/kg dry soil 2,4,6-trinitrobenzoic acid (TNBA) and 5.8 to 544 mg/kg dry soil 2-amino-4,6-dinitrobenzoic acid (2-ADNBA) were found. In addition to the oxidized metabolites, TNT, 4- and 2-aminodinitrotoluene (4- and 2-ADNT), and 2,4-dinitrotoluene (2,4-DNT) were extractable with water. Most interestingly, in one sample, 2-ADNBA represented the main contaminant. The origin of the oxidized nitroaromatics is unknown at this time. They might be generated chemically or photochemically. Furthermore, a biological synthesis seems possible.  相似文献   

12.
Han S  Mukherji ST  Rice A  Hughes JB 《Chemosphere》2011,85(5):848-853
This study was carried out to explore the lowest achievable dinitrotoluene (DNT) isomer concentrations that would support sustained growth of DNT degrading microorganisms under an aerobic condition. Studies were conducted using suspended (chemostat) and attached growth (column) systems. The biodegradation limits for 2,4-dinitrotoluene chemostat and column system were 0.054 ± 0.005 and 0.057 ± 0.008 μM, respectively, and for 2,6-dinitrotoluene, the limits for chemostat and column system were 0.039 ± 0.005 and 0.026 ± 0.013 μM, respectively. The biodegradation limits determined in this study are much lower than the regulatory requirements, inferring that bacterial ability to metabolize DNT does not preclude applications of bioremediation (including natural attenuation) for DNT contaminated media.  相似文献   

13.
N.Lee Wolfe 《Chemosphere》1980,9(9):571-579
Hydrolysis rate constants required for assessing the environmental fate of certain organophosphate and organophosphorothionate esters may be estimated by use of linear free energy relationships (LFERs). LFERs for the second-order alkaline hydrolysis rate constants and the pKa of the conjugate acid of the leaving groups were established for 0,0-dimethyl- and 0,0-diethyl-0-substituted phosphates and phosphorothionates. Also, the second-order alkaline hydrolysis rate constants of selected triaryl phosphates were correlated with the Hammett-sigma constants. Existing LFERs for diaryl phosphate ester anions along with monoaryl phosphate ester mono- and dianions were used to predict hydrolytic half-lives under reaction conditions that are characteristic of aquatic environments.  相似文献   

14.
During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.  相似文献   

15.
Cyclodextrins (CDs) possess a hydrophilic external surface and a hydrophobic cavity. They are thus highly soluble and, in the meantime, effectively form inclusion complexes with hydrophobic organic compounds to enhance their solubilities. In this study, the complexation between modified β-CDs and the herbicide diclofop-methyl (DM), (2-(4-(2,4-dichlorophenoxy)-phenoxy) propionate), was investigated. The complexation was confirmed by the shifts in the wavelengths of maximum ultra violet (UV) absorption and fluorescence excitation/emission. The deuterium isotope effects indicate that in the presence of β-CDs the solubility of DM was lower while that of diclofop was higher in D2O than in H2O, suggesting the primary role of hydrophobic interactions in complexation. The solubility of DM was enhanced in the presence of β-CDs, the extent of which depended on the modification of β-CDs. The complexation reduced the hydrolysis of DM and hence increased its stability. The small inconsistency in the power of β-CDs between hydrolysis retardation and solubilization suggests that hydrolysis was affected by the properties of β-CDs and the configuration of DM in the complexes. Use of β-CDs may thus result in the mobilization of soil DM. Properly modified β-CDs may be utilized as formulation additives for improved delivery of DM and for enhanced environmental remediation.  相似文献   

16.
BACKGROUND, AIM AND SCOPE: For decades, very large areas of former military sites have been contaminated diffusely with the persistent nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). The recalcitrance of the environmental hazard TNT is to a great extent due to its particulate soil existence, which leads to slow but continuous leaching processes. Although improper handling during the manufacture of TNT seems to be a problem of the past in developed countries, environmental deposition of TNT and other explosives is still going on unfortunately, resulting from thousands of unexploded ordnance or low order explosions at munitions test areas and at current battlefields. OBJECTIVE: Sustainable phytoremediation strategies for explosives in Germany, which intend to use trees to decontaminate soil and groundwater ('dendroremediation'), have to consider that most of the former German military sites are already covered with woodlands, mainly with conifer stands. Therefore, parallel investigation of the remediation potential is necessary for both of the selected hybrids of fast growing broadleaf trees, which are waiting for planting and forest conifers, which have already proven for decades that they are able to grow on explosive contaminated sites. MAIN FEATURES: A short literature review is given regarding phytoremediation of TNT with herbaceous plants and some general aspects of dendroremediation are discussed. Furthermore, an overview of our TNT-dendroremediation research network is introduced, which has the strategic goal to make dendroremediation more calculable for a series of potent trees for site-adapted in situ application and for the assessment of tree remediation potentials in natural attenuation processes. RESULTS AND DISCUSSION: Some of our methods, results and conclusions yet unpublished are presented. For a preliminary calculation of area-related annual TNT dendroremediation potential of five-year-old trees, the following values were assessed: Salix EW-13 6.0, Salix EW-20 8.5, Populus ZP-007 4.2, Betula pendula 5.2, Picea abies 1.9 and Pinus sylvestris 0.8 g m(-2) a(-1). For a 45-year-old spruce forest, an annual natural attenuation potential of 4.2 g TNT m(-2) a(-1) was found. CONCLUSION, RECOMMENDATIONS AND PERSPECTIVE: Our main results deliver quantitative proposals for dendroremediation strategies in situ and provide decision aids. Also aspects of growth of raw materials for energy production are considered. Our dendroremediation research concept for TNT and its congeners can be easily completed for other trees of interest and it can also be applied to herbaceous plants. Knowing the current bottlenecks of phytoremediation and considering the known environmental behaviour of other contaminants, elements of our methodological approach may be easily adapted to those pollutant groups, e.g. for pesticides, pharmaceuticals, PAHs, chlorinated recalcitrants and, with some restrictions, to inorganics and to multiple contaminations. Our dynamical dendrotolerance test systems will help to predict tree growth on polluted areas. To provide some light into the black box of TNT dendroremediation, experimental data regarding the uptake, distribution and degradation of [14C]-TNT in mature tree tissues will be reported in the second part of this publication.  相似文献   

17.
In this paper we review an interesting method of PET recycling, i.e. chemical recycling; it is based on the concept of depolymerizing the condensation polymer through solvolytic chain cleavage into low molecular products which can be purified and reused as raw materials for the production of high-quality chemical products. In this work our attention is confined to the hydrolysis (neutral, acid and alkaline) and glycolysis processes of PET chemical recycling; operating conditions and mechanism of each method are reported and described. The neutral hydrolysis has an auto accelerating character; two kinetic models have been proposed: an half-order and a second order kinetic model. The acid hydrolysis could be explained by a modified shrinking core model under chemical reaction control and the alkaline hydrolysis by a first-order model with respect to hydroxide ion concentration. To describe glycolysis, two different kinetic models have been proposed where EG can act or not as internal catalyst. Further experimental and theoretical investigations are required to shed light on the promising processes of PET chemical recycling reviewed in this work.  相似文献   

18.
The degradation of thiamethoxam [(EZ)-3-(2-chloro-1,3-thiazol-5-yl-methyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene (nitro) amine] insecticide in buffers at different pH and temperature levels was investigated in laboratory studies. Acidic hydrolysis under conventional heating conditions and alkaline hydrolysis under both conventional heating and microwave conditions were carried out. Different hydrolysis products were found to form under alkaline and acidic conditions. Hydrolysis of thiamethoxam in acidic, neutral and alkaline buffers followed first-order reaction rate kinetics at pH 4, 7 and 9.2, respectively. Thiamethoxam readily hydrolyzed in alkaline buffer but was comparatively stable in neutral buffer solution. The main products formed under different conditions were characterized on the basis of infrared (IR), 1H-NMR and Mass spectroscopy. The possible mechanisms for the formation of these hydrolysis products have also been proposed.  相似文献   

19.
The kinetics, reaction pathways and product distribution of oxidation of tetrachloroethylene (PCE) by potassium permanganate (KMnO4) were studied in phosphate-buffered solutions under constant pH, isothermal, completely mixed and zero headspace conditions. Experimental results indicate that the reaction is first-order with respect to both PCE and KMnO4 and has an activation energy of 9.3+/-0.9 kcal/mol. The second-order rate constant at 20 degrees C is 0.035+/-0.004 M(-1) s(-1), and is independent of pH and ionic strength (I) over a range of pH 3-10 and I approximately 0-0.2 M, respectively. The PCE-KMnO4 reaction may proceed through further oxidation and/or hydrolysis reaction pathways, greatly influenced by the acidity of the solution, to yield CO2(g), oxalic acid, formic acid and glycolic acid. Under acidic conditions (e.g., pH 3), the further oxidation pathway will dominate and PCE tends to be directly mineralized into CO2 and chloride. Under neutral (e.g., pH 7) and alkaline conditions (e.g., pH 10), the hydroxylation pathway dominates the reaction and PCE is primarily transformed into oxalic acid prior to complete PCE mineralization. Moreover, all chlorine atoms in PCE are rapidly liberated during the reaction and the rate of chloride production is very close to the rate of PCE degradation.  相似文献   

20.
A number of in vitro and in vivo studies have determined that binary and complex mixtures may interact to produce a toxicity that could not be predicted based on the individual chemicals. The present study was conducted with a binary mixture of model compounds to investigate possible interactions affecting their mutagenicity. The compounds included Benzo[a]pyrene (BAP), a polycyclic aromatic hydrocarbon that is an indirect-acting mutagen of great environmental concern, and 2,4,6-Trinitrotoluene (TNT), a nitro-aromatic compound that is a direct-acting mutagen frequently found as a soil contaminant at munitions sites. This study indicated that a binary mixture of BAP and TNT failed to induce the positive mutagenic response in Salmonella typhimurium strain TA98 characteristic of either compound alone. Spectrofluorometric analysis of BAP, and kinetic analyses of 3HBAP uptake in the presence or absence of TNT using TA98 cells that were treated or untreated with activated rat liver microsomes were performed. In cells preloaded with BAP, cellular BAP fluorescence was rapidly suppressed in the presence of TNT. Mass spectroscopy of BAP and TNT mixtures revealed a number of products, believed to be the result of complexation and nitration, that may account for the antagonistic action of TNT on BAP-induced mutagenicity in TA98 cells. Further, kinetic studies indicated that TNT inhibited the incorporation of BAP into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号