首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-series observations of the atmospheric concentrations of the halocarbons, trichlorofluorocarbon (CFC-11), dichlorofluorocarbon (CFC-12), 1,2-trichlorofluoroethane (CFC-113), methyl chloroform (CH3CCl3) and carbon tetrachloride (CCl4) were conducted at a site in Lukang, in Central Taiwan between April and August 2004. Fluctuations in atmospheric concentrations of CFC-11, CFC-12 and CH3CCl3 were generally driven by diurnal land–sea breeze and anthropogenic activity in this area. Elevated levels of CFC-11, CFC-12, and CH3CCl3 frequently occurred when the air was stagnant and the prevailing seaward land breeze was dominant. Atmospheric concentrations of CFC-113 and CCl4 were much less variable relative to CFC-11, CFC-12 and CH3CCl3 during the same period, indicating that emissions of these two species from anthropogenic activities were small. The time-series distributions of atmospheric levels of CFC-12, CFC-11, CH3CCl3 and CO were characterized as a diurnal cycle with an elevated level at night and a low level during the daytime for most of the observed periods. As CFC-12, CFC-11 and CH3CCl3 behave as traffic- and industry-derived airborne pollutants in the urban atmosphere, they provide as a useful tracer in the application for the study of terrestrial airborne pollutants transport across the coastal area driven by land–sea breezes in this area.  相似文献   

2.
使用40 kHz超声(US)脱色氯甲烷(包括CCl4、CHCl3和CH2Cl2)与偶氮染料(包括甲基橙与铬黑T)混合模拟废水,考察了氯甲烷初始浓度对偶氮染料超声脱色和TOC去除的影响。结果表明:偶氮染料的单独超声脱色速率很慢;而在CCl4与CHCl3存在时超声能使偶氮染料短时间内脱色至无色,但对其TOC的超声去除促进作用较差;CH2Cl2对偶氮染料的超声脱色促进作用很小。使用0.392 W/cm2的超声处理24 mg/L铬黑T水溶液,当CCl4和CHCl3初始浓度分别为6.22 mmol/L和8.30 mmol/L时,20 min脱色率均达到90.86%,但相应的TOC去除率只有22.72%和17.76%。同样条件下,甲基橙处理效果比铬黑T稍优。  相似文献   

3.
During the continuous monitoring of atmospheric parameters at the station Cape Point (34°S, 18°E), a smoke plume originating from a controlled fire of 30-yr-old fynbos was observed on 6 May 1997. For this episode, which was associated with a nocturnal inversion and offshore airflow, atmospheric parameters (solar radiation and meteorological data) were considered and the levels of various trace gases compared with those measured at Cape Point in maritime air. Concentration maxima in the morning of 6 May for CO2, CO, CH4 and O3 amounted to 370.3 ppm, 491 ppb, 1730 ppb and 47 ppb, respectively, whilst the mixing ratios of several halocarbons (F-11, F-12, F-113, CCl4 and CH3CCl3) remained at background levels. In the case of CO, the maritime background level for this period was exceeded by a factor of 9.8. Differences in ozone levels of up to 5 ppb between air intakes at 4 and 30 m above the station (located at 230 m above sea level) indicated stratification of the air advected to Cape Point during the plume event. Aerosols within the smoke plume caused the signal of global solar radiation and UV–A to be attenuated from 52.4 to 13.0 mW cm−2 and from 2.3 to 1.3 mW cm−2, respectively, 5 h after the trace gases had reached their maxima. Emission ratios (ERs) calculated for CO and CH4 relative to CO2 mixing ratios amounted to 0.042 and 0.0040, respectively, representing one of the first results for fires involving fynbos. The CO ER is somewhat lower than those given in the literature for African savanna fires (average ER=0.048), whilst for CH4 the ER falls within the range of ERs reported for the flaming (0.0030) and smouldering phases (0.0055) of savanna fires. Non-methane hydrocarbon (NMHC) data obtained from a grab sample collected during the plume event were compared to background levels. The highest ERs (ΔNMHC/ΔCH4) have been obtained for the C2–C3 hydrocarbons (e.g. ethene at 229.3 ppt ppb−1), whilst the C4–C7 hydrocarbons were characterised by the lowest ERs (e.g. n-hexane at 1.0 and n-pentane at 0.8 ppt ppb−1).  相似文献   

4.
Selected thermal and photochemical atmospheric reactions have been evaluated as potential sources for the family of halocarbons recently detected in tropospheric air. Formation of CH3Cl is extremely slow and that of CC4, CHCl3, CH3I, CH3CCl3 and the chlorinated ethylenes is negligible, implying that direct emission is responsible for the presence of these compounds.  相似文献   

5.
It is well known that analysis of global budgets of halocarbons can provide estimates of their atmospheric lifetimes. Furthermore, such analysis may yield information on the interhemispheric mixing rate. The release rates of anthropogenic halocarbons, the average global concentrations, the ratio of hemispherical averages and the rate of change of these ratios are the principal data base for such analysis. These global averaged quantities are derived from a data base of local measurements which may or may not be sufficient to provide global coverage. A generalized analysis allows one to test the consistency of measurements and the global average theory. The sensitivity of derived results for atmospheric lifetimes is shown and the technique for analysis is illustrated with applications to CFCl3 and CH3CCl3. The lifetime analysis for CFCl3 shows considerable sensitivity to uncertainties and variabilities in the data. Nevertheless these data are shown to be consistent with an average interhemispheric transport time of 1–2 years. The data for methylchloroform are shown to be consistent with an atmospheric lifetime of 11.3 years.  相似文献   

6.
Statistical analyses of global atmospheric concentrations provide evidence that C2Cl4, CHCl3 and CH3CCl3 (methylchloroform) are more abundant in the tropical boundary layer than above it (α ? 0.09) by 27% (±27%), 21% (?21%, +12%) and 6.4% (±6%) respectively. The air samples on which these results are based were collected by cryogenic techniques during the June 1978 project GAMETAG flights and analyzed soon afterwards by gas chromatography (EC/GC and GC/FID), thus providing latitudinal concentrations of CO, CH4, CCl3F, CCl2F2, CH3CCl3 and light C2-hydrocarbons, both in and above the boundary layer. In August 1980, after further development of analytical techniques, the stored air samples were re-analyzed to establish the latitudinal distributions of CH3I, CHCl3, C2Cl4, C2F3Cl3 (F-113) and CHClF2 (F-22) in and above the boundary layer. Stability studies, spanning a year, show that the concentrations of these gases do not change in the flasks.  相似文献   

7.
Analysis of time series and trends of nitrous oxide (N2O) and halocompounds weekly monitored at the Mediterranean island of Lampedusa are discussed. Atmospheric N2O levels showed a linear upward growth rate of 0.78 ppb yr?1 and mixing ratios comparable with Northern Hemisphere global stations. CFC-11 and CFC-12 time series displayed a decline consistent with their phase-out. Chlorofluorocarbons (CFCs) replacing compounds and SF6 exhibited an increasing temporal behaviour. The most rapid growth rate was recorded for HFC-134a with a value of 9.6% yr?1. The industrial solvents CCl4 and CH3CCl3, banned by the Montreal Protocol, showed opposite trends. While CH3CCl3 reported an expected decay of ?1.8 ppt yr?1, an increasing rate of 5.7 ppt yr?1 was recorded for CCl4 and it is probably related to its relatively long lifetime and persisting emissions. Chlorinated halomethanes showed seasonality with a maximum in early April and a minimum at the end of September. Halon-1301 and Halon-1211 displayed a decreasing trend consistent with industry emission estimates.An interspecies correlation analysis gave positive high correlations between HCFC-22 and HFC-134a (+0.84) highlighting the common extensive employment as refrigerants. Sharing sources inferred the high coupling between CH3Cl and CH3Br (+0.73) and between CHCl3 and CH2Cl2 (+0.77). A singular strong relationship (+0.55) between HFC-134a and CH3I suggested the influence of an unknown anthropogenic source of CH3I.Constraining of source and sink distribution was carried out by transport studies. Results were compared with the European Environment Agency (EEA) emission database. In contrast with the emission database results, our back trajectory analysis highlighted the release of large amounts of HFC-134a and SF6 from Eastern Europe. Observations also showed that African SF6 emissions may be considerable. Leakages from SF6 insulated electrical equipments located in the industrialized Northern African areas justify our observations.  相似文献   

8.
Irish peatland ecosystems have been shown to be important sources of low molecular weight halocarbons. Emission of CH3Br, CH3Cl, CH3I and CHCl3 was recorded from all peatland sites monitored, with minor flux of other halocarbons at certain sites. Fluxes were found to be highly linked to incident light, with strong diurnal cycles recorded at all open peatland sites. Estimates of halomethane emissions, particularly from coastal peatland and conifer plantation forest floor sites, suggests that these ecosystems may make a significant contribution to the global budgets of several important halocarbons. Global annual fluxes of 4.7 (0.1–151.9), 0.9 (0.1–3.3), 5.5 (0.9–43.4), and 1.4 (0.1–12.8) Gg yr−1 for CHCl3, CH3Br, CH3Cl, and CH3I, respectively, were determined for peatland ecosystems.  相似文献   

9.
An ambient air monitoring program to characterize airborne emissions from the Exxon petroleum refinery at Benicia, California was conducted during September 8–22, 1975. Ground level sampling facilities and an instrumented aircraft provided an integrated, three-dimensional monitoring network. Measurements made during the study included ozone, oxides of nitrogen, methane, carbon monoxide, individual C2-C6 hydrocarbons, halocarbons, condensation nuclei, visual distance and various meteorological parameters. The study focused on three major areas: (1) the characterization of gaseous components within the refinery effluent, especially non-methane hydrocarbons and ozone, (2) natural sunlight bag irradiation experiments to determine the ozone forming potential of refinery emissions, and (3) an investigation of changes in plume chemistry as refinery emissions were transported downwind.  相似文献   

10.
Rates of CO2 production in the reaction CO + OH and CO + OH + halocarbon have been used to determine rate constants for some OH + halocarbon reactions at 29.5°C relative to that of k(CO + OH) = 2.69 × 10?13 cm3 molecule?1 sec?1. The following rate constants were obtained: k(OH + CH3Cl) = 3.1 ± 0.8, k(OH + CH2Cl2) = 2.7 ± 1.0, k(OH + C2H5Cl) = 44.0 ± 25, k(OH + CICH2CH2CI) = 6.5, (<29) and k(OH + CH3CCl3) = 2.1 (<5.7) cm3 molecule?1 sec?1 × 10?14. The k values, CH2Cl2 excepted, are in substantial agreement with determinations made in nonoxygen environments. The present results for CH2Cl2 are almost certainly in error due to difficulties with the competitive approach used.  相似文献   

11.
Chloroderivatives such as, 1,1,1-trichloroethane (C2H3Cl3) carbontetrachloride (CCl4), trichloroethylene (C2HCl3) and tetrachloroethylene (C2Cl4) in air were analyzed intermittently every half hour by ECD-gas chromatography with a programmed automatic gas inlet system for about seven weeks. The results showed a washout effect by rain related to the solubility in water. Decreases in daytime on clear days was demonstrated in the diurnal variation of C2H3Cl3 from the statistical analysis, while distinct reduction of CCl4 in daytime on clear days was not observed. On clear days, C2HCl3 showed the largest reduction while CCl4 showed the least among C2H3Cl3, CCl4 and C2HCl3. This is compatible with conjectures from the reactivity with air pollutants such as NO,NO2 and OH radicals in simulated photochemical chambers.  相似文献   

12.
Chlorinated atmospheric pollutants are presently receiving much attention because of expected chlorine-ozone interactions in the stratosphere.1,2 The fully halogenated pollutants,such as CCI3F, CCl2F2, and CCl4, have no known removal processes that operate in the troposphere. These compounds are accumulating on a global scale, their atmospheric mixing ratios having reached about 2 X 10-10 for CCl2F2,1.2 X 10-10 for CCl3F, and 9 X 10-11 for CCl4.3-5  相似文献   

13.
It is evident that the global concentrations of methylchloroform (CH3CCl3) are increasing although at much lower rates than in the past. The ratio of concentrations in the two hemispheres has varied and is now declining, which reflects the constancy of the industrial emissions over the past 5 years. Observations show that the mid-latitude concentrations in both hemispheres are slightly lower during the summer than at other times, probably reflecting the greater removal of CH3CCl3 by OH radicals during summer. Calculations show that the lifetime of CH3CCl3 is about 6 (±1.5) years, which is considerably shorter than many previous estimates. It implies that there are probably 8 × 105 molecules of OH/cm3 of air, although this estimate may be uncertain by ±75%. The shorter lifetime is partly due to a revision of the estimated absolute concentration of CH3CCl3 in the atmosphere, which was found to be about 20% less than estimated previously. The relatively short lifetime suggests that in the future CH3CCl3 will contribute <15% of the anthropogenic chlorine in the troposphere, which is an approximate measure of its relative contribution to the depletion of the stratospheric ozone layer.  相似文献   

14.
Atmospheric mixing ratios of chlorinated C1 and C2 hydrocarbons (CHCs) were measured at the mountain Wank (Garmisch-Partenkirchen, Bavarian Alps) in autumn 1992. The data lead to the assumption that at least part of the observed CC14 originates from a source different to the other CHCs measured (C2HCL3, C2C14, CHCl3 and CH3CCl3). The nature of this source is discussed.  相似文献   

15.
As part of the Midwest Interstate Sulfur Transformation and Transport (MISTT) study, the summer sulfur budget of the plume of the 2400 MW coal-fired Labadie power plant near St. Louis, Missouri is assessed via aircraft data, ground monitoring network data and a two-box model. The paniculate sulfur (Sp) formation rate is obtained from three-dimensional plume mapping combined with a high time-resolution Sp sampling technique. During noon hours the SO2 conversion rate is found to be 1–4% per hour, compared to night rates below 0.5% per hour. Plume excess light scattering coefficient (bscat) and excess Sp correlated well (r = 0.87), indicating most Sp is formed in the light-scattering size range.During daytime the well-mixed plume is transported at 5ms−1 on the average; at night the July average wind speed at plume height is 12ms−1 due to the low-level jet The nocturnal plume is less than 100 m thick at 400 m above ground and is decoupled from the surface until morning. Ground monitoring data from the Regional Air Pollution Study (RAPS) show that plume entrainment into the rising mixing layer is completed by 1000 Central Daylight Time (CDT). Due to daytime vertical mixing and nocturnal decoupling, the dry removal rate for the elevated plume is highest near noon. In a daily cycle, the plume sequentially passes through a reservoir regime, dissociated from delivery to the ground and then enters the mixing-removal regime.A two-box model representing the two regimes, with diurnally periodic rate constants for transformation and removal, is employed to estimate plume sulfur budgets. Ignoring wet removal, 30–45% of the SO2 is estimated to be converted to Sp, half within the first day. Particulate sulfur is formed unevenly: the afternoon plume contributes more than its share because it rises so high that it has more time to react before removal begins. In short: transformation and removal occur mainly during the daytime, while transport is fastest at night. After a hard day of convection, reaction and deposition, the lower atmosphere relaxes at dusk while the midwestern plume takes off overnight on a jetstream and begins the next day's work 300–400 km from the stack.  相似文献   

16.
To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO2, CO and CO2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C2–C3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7.  相似文献   

17.
Abstract

Dichloromethane (DCM, also known as methylene chloride [CH2Cl2]) is often present in industrial waste gas and is a valuable chemical product in the chemical industry. This study addresses the oxidation of airstreams that contain CH2Cl2 by catalytic oxidation in a tubular fixed-bed reactor over perovskite-type oxide catalysts. This work also considers how the concentration of influent CH2Cl2 (Co = 500-1000 ppm), the space velocity (GHSV = 5000-48,000 1/hr), the relative humidity (RH = 10-70%) and the concentration of oxygen (O2 = 5-21%) influence the operational stability and capacity for the removal of CH2Cl2.

The surface area of lanthanum (La)-cobalt (Co) composite catalyst was the greatest of the five perovskite-type catalysts prepared in various composites of La, strontium, and Co metal oxides. Approximately 99.5% CH2Cl2 reduction was achieved by the catalytic oxidation over La-CoO3-based perovskite catalyst at 600 °C. Furthermore, the effect of the initial concentration and reaction temperature on the removal of CH2Cl2 in the gaseous phase was also monitored. This study also provides information that a higher humidity corresponds to a lower conversion. Carbon dioxide and hydrogen chloride were the two main products of the oxidation process at a relative humidity of 70%.  相似文献   

18.
Trichloroacetic acid (TCA; CCl3COOH) is a phytotoxic chemical. Although TCA salts and derivatives were once deployed as herbicides against perennial grasses and weeds, their use has since been banned because of their indiscriminate herbicidal effects on woody plant species. However, TCA can also be formed in the atmosphere. For instance, high-volatile C2-chlorohydrocarbons tetrachloroethene (TECE, C2Cl4) and 1,1,1-trichloroethane (TCE, CCl3CH3) can react to TCA and other substances under oxidative conditions here. Owing to further industrialisation of Southeast Asia, South Africa and South America, a rise can be expected in the use of TECE as solvents in the metal and textile industries of these regions in the southern hemisphere (SH). The increasing emissions of this substance—together with the rise in the atmospheric oxidation potential caused by urban activities, slash and burn agriculture and forest fires in the SH—will result in the increased input/formation of TCA in the vegetation located on the lee side of these emission sources. By means of biomonitoring studies, inputs/formation of TCA related to the climatic conditions were detected at various locations in South America, Africa, and Europe.  相似文献   

19.
Measurements of CCl3F and CCl4 in the ambient air have been made at Harwell since October 1974. The measurements are taken every 2 h on average and this data is used to produce monthly histograms. Over the period January 1975–November 1977 the mean and standard deviations of these histograms for both F11 and CCl4 have varied considerably. Months dominated by easterly winds show larger values than months dominated by westerly winds, reflecting no doubt the difference in anthropogenic activity under the two classes of trajectories.The average CCl3F concentration at Harwell increased with time and the data have been used to determine the growth in the background CCl3F concentration over the period in question. This was occurring at approximately 1.1 pptv per month, in very good agreement with our calculated value of 1.0 pptv per month, for removal entirely by photolysis in the stratosphere. The data is of sufficient quality to show that a substantial tropospheric sink for CCl3F is most unlikely.There is a good correlation between the monthly mean concentrations of CCl3F and CCl4, which is also increasing with time. A value for the rate of CCl4 increase in the background atmosphere has been derived (0.35 pptv per month) which is significantly different from our calculated estimate (0.2 pptv per month). The reason for this could either be errors made in estimating emissions, or possibly formation in the atmosphere from C2Cl4. In any case the data fits the idea of an anthropogenic source much better than a natural one.  相似文献   

20.
Multiyear (2000–2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C1–C4 alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels.Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 × 10?3 consistent with direct observations by other investigators within the crater rim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号