首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding sediment Escherichia coli levels (i.e., pathogen indicators) and their contribution to the water column during resuspension is critical for predicting in‐stream E. coli levels and the potential risk to human health. The U.S. Environmental Protection Agency's current water quality testing strategies, however, rely on water borne E. coli concentrations to assess stream E. coli levels and identify impaired waters. In this work, we conducted a scenario analysis using a range of flows, sediment/water bacteria fractions, and particle sizes to which E. coli attach to assess the impact of E. coli in streambed sediments on water column E. coli levels. We used simple sediment transport theory to calculate the potential total E. coli concentrations in a stream with and without the resuspension process. Results clearly indicate that inclusion of resuspending sediment attached E. coli is necessary for watershed assessments and data on sediment attached E. coli concentrations is much needed. When neglecting the streambed sediment E. coli concentrations, the model predicted average E. coli loads of 107 Colony Forming Units (CFU)/s; however, when streambed sediment E. coli concentrations were included in the model, the predictions ranged from 1010 to 1014 CFU/s. To evaluate the predictions, E. coli data in the streambed sediment and the water column were monitored in Squaw Creek, Iowa. Comparisons between measured and predicted E. coli loads yielded an R2‐value of 0.85.  相似文献   

2.
A sub‐model for the Soil and Water Assessment Tool (SWAT) is developed to predict Escherichia coli levels in the streambed sediment as well as in the water column. New formulations to estimate the levels of E. coli in streambed sediment and the water column are derived. These equations include calculations of E. coli resuspension from the streambed sediment to the water column, E. coli deposition from the water column to the streambed sediment, E. coli growth in the streambed sediment and the water column, and instream E. coli routing. These formulations were programmed in FORTRAN and integrated into SWAT. The modified SWAT model was applied to Squaw Creek Watershed, Iowa, to predict E. coli levels in the stream. Escherichia coli concentrations in the streambed sediment and the water column were monitored extensively in this watershed, and observations were used to verify the model predictions. The model proposed here can predict E. coli concentrations in streambed sediment as well as in the water column. Approximately 58% of the predictions of E. coli levels in the bed sediment were within 1 order of magnitude from the observed value, and in the water column 83% of the predictions of E. coli levels were within 1 order of magnitude. Results suggest that the proposed model will help predictions of instream bacterial contamination.  相似文献   

3.
The representativeness of ambient water samples collected from bridge crossings has occasionally been challenged because critics contend birds nesting on bridges elevate fecal indicator bacteria concentrations over samples collected from river reaches not spanned by bridges. This study was designed to evaluate the influence, if any, of bridge‐dwelling bird colonies on instream bacteria concentrations. Three bridges in central Texas were sampled under dry‐weather conditions for instream Escherichia coli. Two bridges were inhabited by migratory cliff swallows and one was devoid of birds. Numerous samples were collected from locations upstream, at the upstream bridgeface, and downstream of each bridge to determine whether significant increases in E. coli occurred in a downstream direction when birds were present. E. coli values increased significantly at bridgeface and downstream locations compared to upstream locations throughout the nesting season. During peak bird activity in May, bacteria geometric mean concentrations at bridgeface and downstream locations jumped from background levels <50 to >190 colony forming units (CFU)/100 mL, well above the state geometric mean criterion of 126 CFU/100 mL for primary contact recreation use. Results confirmed that under dry‐weather conditions bird colonies can have a significant impact on bacteria concentrations in the vicinity of the bridges they inhabit and therefore, to avoid this impact, monitoring should occur upstream of bridges.  相似文献   

4.
Abstract: Water‐quality standards have been placed on fecal indicator organisms such as Escherichia coli in an attempt to limit the concentrations in water bodies. Cattle can be a significant source of bacteria to water systems, particularly when they are allowed direct access to streams. A flume study was conducted to quantify the effect and understand the transport of E. coli from directly deposited cattle manure. Five steady‐state flows, ranging from 0.00683 to 0.0176 m3/s, were studied and loads from a single cowpie exceeded the U.S. Environmental Protection Agency’s recommended water‐quality standards (235 CFU/100 ml) at each flow over the hour study period. Average E. coli concentrations ranged from 102 to 105 CFU/100 ml over the hour sampling period for all flows. High spatial variations in E. coli concentrations were often seen at each sampling time, with higher concentrations typically at the bottom of the flume. E. coli resuspension was initially greater at 0.5 min after deposition, for the lowest flow (105 CFU/m2/s); however, resuspension rates became similar over time, on the order of 103 CFU/m2/s. This study demonstrates that the concentrations of E. coli can vary over the water column, and therefore grab samples may inaccurately measure bacteria concentrations and loads in streams. In addition, resuspension rates were often high, so the incorporation of this process into water‐quality models is important for bacteria prediction.  相似文献   

5.
Recent studies indicate fecal coliform bacterial concentrations, including Escherichia coli (E. coli), characteristically vary by several orders of magnitude, depending on the hydrology of storm recharge and discharge. E. coli concentrations in spring water increase rapidly during the rising limb of a storm hydrograph, peak prior to or coincident with the peak of the storm pulse, and decline rapidly, well before the recession of the storm hydrograph. This suggests E. coli are associated with resuspension of sediment during the onset of turbulent flow, and indicates viable bacteria reside within the spring and stream sediments. E. coli inoculated chambers were placed in spring and stream environments within the mantled karst of northwest Arkansas to assess long term (> 75 days) E. coli viability. During the 75‐day study, a 4‐log die‐off of E. coli was observed for chambers placed in the Illinois River, and a 5‐log die‐off for chambers placed in Copperhead Spring. Extrapolation of the regression line for each environment indicates E. coli concentration would reach 1 most probable number (MPN)/100 g sediment at Copperhead Spring in about 105 days, and about 135 days in the Illinois River, based on a starting inoculation of 2.5 × 107 MPN E. coli/100 g of sediment. These in situ observations indicate it is possible for E. coli to survive in these environments for at least four months with no fresh external inputs.  相似文献   

6.
Abstract: Escherichia coli was used as a bacterial tracer for the development, calibration, and validation of a watershed scale fate and transport model to be extended to a suite of reference pathogens (Cryptosporidium, Giardia, Campylobacter, E. coli O157:H7). E. coli densities in water and sediments from the Blackstone River Watershed, Massachusetts, were measured at three sites for a total of five wet weather events and three dry weather events covering three seasons. The confirmed E. coli strains were identified by ribotyping for tracking the sources of E. coli and for determining the association of downstream E. coli isolates with isolates from upstream sediments. A large number of downstream samples were associated with upstream sediment sources of E. coli. E. coli densities ranged from 71 to 6,401 MPN/100 ml in water samples and from 2 to 335 MPN/g in sediments. Pearson correlation analysis revealed significant correlations between E. coli and total coliforms in water (r = 0.777, p < 0.01) and sediments (r = 0.728, p < 0.01). In addition, E. coli concentrations in water were weakly correlated with sediment particle size and sediment concentrations (r = 0.298, p < 0.01). A hydrologic model, WATFLOOD/SPL9, was used to predict the temporal and spatial variation of E. coli in the Blackstone River. The rapid rise of stream E. coli densities was more accurately predicted by the model with the inclusion of sediment resuspension, thus demonstrating the importance of the process.  相似文献   

7.
The variability of indicator bacteria over a fine resolution time scale on the order of minutes has yet to be fully understood. In this study, we collected more than 700 Escherichia coli samples at a 10‐ and 30‐min resolution in an urban watershed in Houston. A Bacteria Diurnal Sag (BDS) marked with daytime exponential decay followed by an exponential nighttime regeneration was observed. This pattern was observed during all sampled events but varied depending on other variables. The concentrations during a 24‐h period varied 1 to 5 orders of magnitude and the fecal load was at least 10 times lower than what would be obtained using a single morning E. coli measurement, the typical sampling scheme in most monitoring programs. Decay rates, ranging from 3.67 to 24.7/day, decreased E. coli concentrations to below the water‐quality standards from 14:00 to 18:00 h and were strongly influenced by water temperatures and solar radiation intensities. Rapid regeneration occurred on the order of 9.41 to 64.1/day allowing E. coli concentrations to return to their pre‐decay levels. The data indicated that four to six samples taken between 06:00 and 18:00 h may be sufficient to define the BDS depending on stream conditions, and that a threshold concentration of approximately 100 MPN/dl (most probable number in a deciliter) existed for the studied urban watershed. These findings have significant implications for water‐quality monitoring, regulation, and compliance.  相似文献   

8.
Bougeard, Morgane, Jean‐Claude Le Saux, Nicolas Pérenne, Claire Baffaut, Marc Robin, and Monique Pommepuy, 2011. Modeling of Escherichia coli Fluxes on a Catchment and the Impact on Coastal Water and Shellfish Quality. Journal of the American Water Resources Association (JAWRA) 1‐17. DOI: 10.1111/j.1752‐1688.2011.00520.x Abstract: The simulation of the impact of Escherichia coli loads from watersheds is of great interest for assessing estuarine water quality, especially in areas with shellfish aquaculture or bathing activities. For this purpose, this study investigates a model association based on the Soil and Water Assessment Tool (SWAT) coupled with a hydrodynamic model (MARS 2D; IFREMER). Application was performed on the catchment and estuary of Daoulas area (France). The daily E. coli fluxes simulated by SWAT are taken as an input in the MARS 2D model to calculate E. coli concentrations in estuarine water and shellfish. Model validation is based on comparison of frequencies: a strong relationship was found between calculated and measured E. coli concentrations for river quality (r2 = 0.99) and shellfish quality (r2 = 0.89). The important influence of agricultural practices and rainfall events on the rapid and large fluctuations in E. coli fluxes from the watershed (reaching three orders of magnitude in <24 hours) is one main result of the study. Response time in terms of seawater quality degradation ranges from one to two days after any important rainfall event (greater than 10 mm/day) and the time for estuary to recover good water quality also mainly depends on the duration of the rainfall. In the estuary, three effects (rainfall, tidal dilution, and manure spreading) have been identified as important influences.  相似文献   

9.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

10.
Several biofuel cropping scenarios were evaluated with an improved version of Soil and Water Assessment Tool (SWAT) as part of the CenUSA Bioenergy consortium for the Boone River Watershed (BRW), which drains about 2,370 km2 in north central Iowa. The adoption of corn stover removal, switchgrass, and/or Miscanthus biofuel cropping systems was simulated to assess the impact of cellulosic biofuel production on pollutant losses. The stover removal results indicate removal of 20 or 50% of corn stover in the BRW would have negligible effects on streamflow and relatively minor or negligible effects on sediment and nutrient losses, even on higher sloped cropland. Complete cropland conversion into switchgrass or Miscanthus, resulted in reductions of streamflow, sediment, nitrate, and other pollutants ranging between 23‐99%. The predicted nitrate reductions due to Miscanthus adoption were over two times greater compared to switchgrass, with the largest impacts occurring for tile‐drained cropland. Targeting of switchgrass or Miscanthus on cropland ≥2% slope or ≥7% slope revealed a disproportionate amount of sediment and sediment‐bound nutrient reductions could be obtained by protecting these relatively small areas of higher sloped cropland. Overall, the results indicate that all biofuel cropping systems could be effectively implemented in the BRW, with the most robust approach being corn stover removal adopted on tile‐drained cropland in combination with a perennial biofuel crop on higher sloped landscapes. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

11.
Sejkora, Patrick, Mary Jo Kirisits, and Michael Barrett, 2011. Colonies of Cliff Swallows on Highway Bridges: A Source of Escherichia coli in Surface Waters. Journal of the American Water Resources Association (JAWRA) 47(6):1275–1284. DOI: 10.1111/j.1752‐1688.2011.00566.x Abstract: Animals, such as birds, are a source of fecal indicator bacteria and pathogens in the environment. Our objective was to determine whether a colony of cliff swallows nesting underneath a bridge would yield a measurable increase in fecal indicator bacteria (specifically Escherichia coli) in the underlying creek. When the swallows were absent, dry‐weather concentrations of E. coli upstream and downstream of the bridge (in Austin, Texas) were below the Texas contact recreation criteria. When the swallows were present, dry‐weather geometric‐mean E. coli concentrations increased significantly from upstream (43 most probable number [MPN]/100 ml) to downstream (106 MPN/100 ml) of the bridge. One exceedance and one near‐exceedance of the Texas single‐sample contact recreation criterion were observed during the swallows’ nesting phase. When the swallows were present, the downstream E. coli geometric‐mean concentration in storm events (875 MPN/100 ml) was significantly higher than the upstream concentration (356 MPN/100 ml), suggesting that runoff flushes swallow feces from the ground into the creek. Although the loading of E. coli from cliff swallows nesting under bridges can be significant (e.g., dry‐weather loading of 3.1 × 108 MPN/day/nest), the zoonotic potential of the cliff swallow must be examined to determine the risk to human health from contact recreation in waters contaminated with cliff swallow feces.  相似文献   

12.
This article analyzes the correlations of the observed and modeled light attenuation coefficient, Kd, with in situ total suspended solids (TSS) and chlorophyll‐a concentrations in Chesapeake Bay (CB) tidal waters, and with sediment and nutrient loads from the Chesapeake watershed. Light attenuation is closely related to in situ TSS and chlorophyll‐a concentrations, however, the strength of the correlation differs among the CB segments. There are distinct differences between saline and tidal fresh segments in the main Bay, but less distinction among saline and tidal fresh segments in the tidal tributaries. The correlation between Kd with sediment and nutrient loads is complicated by the lag times of TSS and the chlorophyll‐a responses to reductions in nutrient and sediment loads from the watershed, and also due to the diverse load sources. Three sets of model sensitivity scenarios were performed with: (1) differential sediment and nutrient loads; (2) selective sediment source types; and (3) geographically isolated inputs. The model results yield similar findings as those based on observed data and provide information regarding the effect of sediment on specific water bodies. Based on the model results a method was developed to determine sediment and nutrient load reductions needed to achieve the water clarity standards of the CB segments.  相似文献   

13.
Devils Lake is an endorheic lake in the Red River of the North basin in northeastern North Dakota. During the last two decades, the lake water level has risen by nearly 10 m, causing floods that have cost more than 1 billion USD in mitigation measures. Another increase of approximately 1.5 m in the lake water level would cause spillage into the Sheyenne River. To alleviate this potentially catastrophic spillage, two artificial outlets were constructed. However, the artificial drainage of water into the Sheyenne River raises water quality concerns because the Devils Lake water contains significantly higher concentrations of dissolved solids, particularly sulfate. In this study, the Soil and Water Assessment Tool (SWAT) was coupled with the CE‐QUAL‐W2 model to simulate both water balance and sulfate concentrations in the lake. The SWAT model performed well in simulating daily flow in tributaries with ENS > 0.5 and |PBIAS| < 25%, and reproduced the lake water level with a root mean square error of 0.35 m for the study period from 1995 to 2014. The water temperature and sulfate concentrations simulated by CE‐QUAL‐W2 for the lake are in general agreement with the field observations. The model results show that the operation of the two outlets since August 2005 has lowered the lake level by 0.70 m. Furthermore, the models show pumping water from the two outlets raises sulfate concentrations in the Sheyenne River from ~100 to >500 mg/L. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

14.
Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm‐ and tidal‐related flooding of spatially extensive coastal marshes within the north‐central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L‐Band SAR (PALSAR) (L‐band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C‐band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006‐2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR‐ and ASAR‐based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference‐scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR‐based inundation accuracies averaged 84% (= 160), while ASAR‐based mapping accuracies averaged 62% (= 245).  相似文献   

15.
In some watersheds, streambanks are a source of two major pollutants, phosphorus (P) and sediment. P originating from both uplands and streambanks can be transported and stored indefinitely on floodplains, streambanks, and in closed depressions near the stream. The objectives of this study were to (1) test the modified streambank erosion and instream P routines for the Soil and Water Assessment Tool (SWAT) model in the Barren Fork Creek watershed in northeast Oklahoma, (2) predict P in the watershed with and without streambank‐derived P, and (3) determine the significance of streambank erosion P relative to overland P sources. Measured streambank and channel parameters were incorporated into a flow‐calibrated SWAT model and used to estimate streambank erosion and P for the Barren Fork Creek using modified streambank erosion and instream P routines. The predicted reach‐weighted streambank erosion was 40 kg/m vs. the measured 42 kg/m. Streambank erosion contributed 47% of the total P to the Barren Fork Creek and improved P predictions compared to observed data, especially during the high‐flow events. Of the total P entering the stream system, approximately 65% was removed via the watershed outlet and 35% was stored in the floodplain and stream system. This study successfully applied the SWAT model's modified streambank erosion and instream P routines and demonstrated that streambank‐derived P can improve P modeling at the watershed scale. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

16.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

17.
Abstract: Remediation of waters impaired by bacterial indicators is usually dictated by total maximum daily load plans, which are heavily dependent on fate and transport modeling of bacterial indicators. Nonpoint source pollution models are most frequently used to assess bacterial transport to surface waters and most models typically simulate bacterial transport as a dissolved pollutant. Previous studies have found that cells preferentially attach to sediments; however, a variety of techniques have been used to assess attachment including filtration, fractional filtration, and centrifugation. In addition, a variety of chemical and physical dispersion techniques are used to release attached and bioflocculated cells from particulates. Here we developed and validated an easy‐to‐replicate laboratory procedure for separation of unattached from attached E. coli which will also identify particle sizes to which E. coli preferentially attach. Physical and chemical dispersion techniques were evaluated and a combined hand shaker treatment for 10 min followed by dilutions in 1,000 mg/l of Tween 85 significantly increased total E. coli concentrations by 31% when compared with a control. In order to separate unattached from attached fractions, two commonly used techniques, fractional filtration, and centrifugation were combined. The filtration and centrifugation treatments did not reduce E. coli concentrations when compared with a control (p > 0.05), indicating that damage was not inflicted upon the E. coli cells during the separation procedure.  相似文献   

18.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   

19.
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

20.
Riebschleager, K.J., R. Karthikeyan, R. Srinivasan, and K. McKee, 2012. Estimating Potential E. coli Sources in a Watershed Using Spatially Explicit Modeling Techniques. Journal of the American Water Resources Association (JAWRA) 48(4): 745‐761. DOI: 10.1111/j.1752‐1688.2012.00649.x Abstract: The Spatially Explicit Load Enrichment Calculation Tool (SELECT) was automated to characterize waste and the associated pathogens from various sources within a mixed land use watershed. Potential Escherichia coli loads in Lake Granbury watershed were estimated using spatially variable governing factors, such as land use, soil condition, and distance to streams. A new approach for characterizing E. coli loads resulting from malfunctioning on‐site wastewater treatment systems (OWTSs) was incorporated into SELECT along with the Pollutant Connectivity Factor (PCF) module. The PCF component was applied to identify areas contributing E. coli loads during runoff events by incorporating the influence of potential E. coli loading, runoff potential, and travel distance to waterbodies. Simulation results indicated livestock and wildlife are potential E. coli contributing sources in the watershed. The areas in which these sources are potentially contributing are not currently monitored for E. coli. The bacterial water quality violations seen around Lake Granbury are most likely the result of malfunctioning OWTSs and pet wastes. SELECT results demonstrate the need to evaluate each contributing source separately to effectively allocate site specific best management practices (BMPs) utilizing stakeholder inputs. It also serves as a powerful screening tool for determining areas where detailed investigation is merited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号