首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schiff, Kenneth C. and Liesl L. Tiefenthaler, 2011. Seasonal Flushing of Pollutant Concentrations and Loads in Urban Stormwater. Journal of the American Water Resources Association (JAWRA) 47(1):136‐142. DOI: 10.1111/j.1752‐1688.2010.00497.x Abstract: Despite broad observations of first flush within storms, the scientific understanding of seasonal flushing remains incomplete. Seasonal flushing occurs when initial storms of the season have greater concentrations or loads than storms later in the season. The goal of this study was to census stormwater concentrations and loads from an arid, urban watershed to quantify seasonal flushing. Samples were collected every 15 min during the 1997‐1998 wet season from the Santa Ana River and analyzed for total suspended solids. Initial storms of the season generated event mean concentrations 3‐10 times the event mean concentration of storms later in the season. Cumulative flow‐weighted mean concentrations were calculated as the season progressed. Early season storms discharged only 6% of the annual volume, but influenced flow‐weighted mean concentrations well past the midpoint of the wet season. Mass‐based estimates also indicated a disproportionate load in the early portion of the year; over 52% of the annual load was discharged in the first 30% of the annual volume from the highly urbanized lower watershed. Other stormwater pollutants, including six trace metals (Cd, Cr, Cu, Pb, Ni, Zn), were highly correlated with total suspended solids and also exhibited a significant seasonal flush.  相似文献   

2.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

3.
This study develops and tests a novel optimization method for optimally selecting and sizing stormwater control measures (SCMs) in urban landscapes for selected design storms. The developed methodology yields SCMs that capture and retain stormwater via onsite percolation, remove stormwater pollutants, and minimize stormwater control expenditures. The resulting environmental optimization problem involves integer and real variables imbedded in an objective function that is subjected to multiple constraints. This study's methodology aims at practicality and ease of implementation in the solution of the SCM sizing and selection optimization problem while taking into account the main factors that govern stormwater management in urban landscapes. The near‐optimal global solution of the SCM selection and design problem is obtained with nonlinear programming and verified with the average of multiple solutions calculated with multiple runs of an optimization evolutionary algorithm. The developed methodology is illustrated with one stormwater project in the City of Los Angeles, California.  相似文献   

4.
ABSTRACT Urban storm water from a 1,067-acre drainage basin in Durham, N.C. was characterized to determine yield of pollutants. Population density averaged 9 persons per acre (ranging from <3 to 16). Annual BOD contribution attributable to surface wash during storms was determined to be approximately equal to contribution by its secondary wastewater treatment plant effluent. Total organic matter (COD) was estimated to exceed the amount in raw sanitary sewage from a residentially developed area of the same size. Mean basin yields (Ib/acre/day) were: BOD-0.23, COD-2.85, Total Solids-43.6, Volatile Total Solids-4.8, Total Phosphate-0.01 and Chloride-0.20 (as NaQ). The yield of lead presumed to originate from internal combustion engines operating on and near the basin was determined to be 0.006 Ib/acre/day. The concentration of total pesticides (Dieldrin; p,p'DDE; p,p-DDT; p,p'DDD and p,p'DDT) weighted for flow significance was estimated to be 1.2 parts per billion. The major long-term pollutional impact on a projected downstream reservoir was considered to be the fixed solids residue and long-term oxygen demand (COD). Intermittent release of other pollutants in slugs during runoff periods may be a significant factor in causing undesirable effects in streams draining urban areas.  相似文献   

5.
Urban stormwater practices are individually diverse, but they are components of an overall urban watershed system. This study proposes a conceptual model of that system, including its component spatial areas, their arrangement along the flow route, and their associations with urban land uses and values. The model defines three spatial areas along the flow route which have evolved over time into their present forms: (1) the source area, which is arranged and furnished primarily or entirely for human use, accommodation, and comfort; (2) the perimeter area, where specialized stormwater facilities carry away source‐area runoff or buffer downstream areas from its impacts; and (3) the downstream area, which receives the discharges from the perimeter or directly from the source area. Each area presents a specific combination of stormwater features and human interactions, and excludes others. Considering stormwater flows and functions in the context of physical urban spaces brings into view the spaces’ urban structures and interacting agendas. This model allows practitioners to navigate conceptually through the system, and to focus appropriate objectives and structures on each project site.  相似文献   

6.
By discharging excess stormwater at rates that more frequently exceed the critical flow for stream erosion, conventional detention basins often contribute to increased channel instability in urban and suburban systems that can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at approximately $600,000 per km2 in a representative suburban watershed, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost‐effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent storm events (~ < two‐year recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (such as the 100‐year recurrence). Results from a pilot installation show that the Detain H2O device reduced the cumulative sediment transport capacity of the preretrofit condition by greater than 40%, and contributed to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that potential gains in water quality and stream channel stability could be achieved at costs that are orders of magnitude less than comparable benefits from newly constructed stormwater control measures.  相似文献   

7.
Abstract: This paper describes the construction and testing of a device for pumping water samplers that collects suspended sediment samples by moving the intake vertically to keep it at the same proportion of flow depth. The device uses a simple sprocket mechanism that can be mounted vertically on the downstream side of culverts and bridge pilings to protect against damage from floating debris during storms. Suspended sediment samples collected from an urban stream with the depth‐proportional device were compared with manual samples taken with a depth‐integrated sampler. Scatter in the relationship between pumped and manual samples (R2 = 0.76) are probably explained by horizontal variability in concentrations, poor mixing associated with lateral sediment inputs from construction site erosion, the downstream orientation of the intake, and the failure of the concentration at 60% of the flow depth to match the average vertical concentration.  相似文献   

8.
Abstract: Headwater streams make up a large proportion of the total length and watershed area of fluvial networks, and are partially characterized by the large volume of organic matter (large wood, detritus, and dissolved organic matter) and invertebrate inputs from the riparian forest, relative to stream size. Much of those inputs are exported to downstream reaches through time where they potentially subsidize river communities. The relative rates, timing, and conversion processes that carry inputs from small streams to downstream reaches are reasonably well quantified. For example, larger particles are converted to smaller particles, which are more easily exported. Also, dissolved organic matter and surface biofilms are converted to larger particles which can be more easily intercepted by consumers. However, the quality of these materials as it affects biological activity downstream is not well known, nor is the extent to which timing permits biological use of those particles. These ecological unknowns need to be resolved. Further, land uses may disrupt and diminish material transport to downstream reaches by removing sources (e.g., forest harvest), by affecting transport and decomposition processes (e.g., flow regulation, irrigation, changes in biotic communities), and by altering mechanisms of storage within headwaters (e.g., channelization). We present conceptual models of energy and nutrient fluxes that outline small stream processes and pathways important to downstream communities, and we identify informational gaps that, if filled, could significantly advance the understanding of linkages between headwater streams and larger rivers. The models, based on empirical evidence and best professional judgment, suggest that navigable waters are significantly influenced by headwater streams through hydrological and ecological connectivities, and land use can dramatically influence these natural connectivities, impacting downstream riverine ecosystems.  相似文献   

9.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   

10.
Abstract: Runoff from parking lots during summer storms injects surges of hot water into receiving water bodies. We present temperature data collected near urban storm sewer outfalls in Blacksburg, Virginia, using arrays of sensors in a stream and a stormwater pond. Surges occurred roughly a dozen times per month, ranging up to 8.1°C with average duration 2 h in the stream and up to 11.2°C with average duration 7 h in the pond. Surges were larger in the pond due to a larger contributing watershed, no dilution by upstream water, and cool background temperatures near the outfall. Surges began abruptly, warming at rates averaging 0.2°C/min for periods of 5‐20 min. Surges dissipated as they propagated into the water bodies, travelling further in the stream (>19 m) than the pond (~10 m) consistent with greater advection in the stream. Surges were largest and most frequent in the afternoon but occurred at all times of day and night. Stream surges exhibited two phases: an early high‐temperature low‐volume input from the storm sewer and a later low‐temperature high‐volume input from upstream. Surges at the pond did not exhibit two phases, consistent with inputs only from storm sewers. Surges are likely common in urban areas, and may cumulatively have consequences for aquatic organisms, biogeochemical process rates, and even human health. Such effects may be compounded by urban heat islands and climate change, so prevention or mitigation should be considered.  相似文献   

11.
Abstract: Phosphorus and sediment are major nonpoint source pollutants that degrade water quality. Streambank erosion can contribute a significant percentage of the phosphorus and sediment load in streams. Riparian land‐uses can heavily influence streambank erosion. The objective of this study was to compare streambank erosion along reaches of row‐cropped fields, continuous, rotational and intensive rotational grazed pastures, pastures where cattle were fenced out of the stream, grass filters and riparian forest buffers, in three physiographic regions of Iowa. Streambank erosion was measured by surveying the extent of severely eroding banks within each riparian land‐use reach and randomly establishing pin plots on subsets of those eroding banks. Based on these measurements, streambank erosion rate, erosion activity, maximum pin plot erosion rate, percentage of streambank length with severely eroding banks, and soil and phosphorus losses per unit length of stream reach were compared among the riparian land‐uses. Riparian forest buffers had the lowest streambank erosion rate (15‐46 mm/year) and contributed the least soil (5‐18 tonne/km/year) and phosphorus (2‐6 kg/km/year) to stream channels. Riparian forest buffers were followed by grass filters (erosion rates 41‐106 mm/year, soil losses 22‐47 tonne/km/year, phosphorus losses 9‐14 kg/km/year) and pastures where cattle were fenced out of the stream (erosion rates 22‐58 mm/year, soil losses 6‐61 tonne/km/year, phosphorus losses 3‐34 kg/km/year). The streambank erosion rates for the continuous, rotational, and intensive rotational pastures were 101‐171, 104‐122, and 94‐170 mm/year, respectively. The soil losses for the continuous, rotational, and intensive rotational pastures were 197‐264, 94‐266, and 124‐153 tonne/km/year, respectively, while the phosphorus losses were 71‐123, 37‐122, and 66 kg/km/year, respectively. The only significant differences for these pasture practices were found among the percentage of severely eroding bank lengths with intensive rotational grazed pastures having the least compared to the continuous and rotational grazed pastures. Row‐cropped fields had the highest streambank erosion rates (239 mm/year) and soil losses (304 tonne/km/year) and very high phosphorus losses (108 kg/km/year).  相似文献   

12.
Forest harvesting can increase solar radiation in the riparian zone as well as wind speed and exposure to air advected from clearings, typically causing increases in summertime air, soil, and stream temperatures and decreases in relative humidity. Stream temperature increases following forest harvesting are primarily controlled by changes in insolation but also depend on stream hydrology and channel morphology. Stream temperatures recovered to pre‐harvest levels within 10 years in many studies but took longer in others. Leaving riparian buffers can decrease the magnitude of stream temperature increases and changes to riparian microclimate, but substantial warming has been observed for streams within both unthinned and partial retention buffers. A range of studies has demonstrated that streams may or may not cool after flowing from clearings into shaded environments, and further research is required in relation to the factors controlling downstream cooling. Further research is also required on riparian microclimate and its responses to harvesting, the influences of surface/subsurface water exchange on stream and bed temperature regimes, biological implications of temperature changes in headwater streams (both on site and downstream), and methods for quantifying shade and its influence on radiation inputs to streams and riparian zones.  相似文献   

13.
Abstract: Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river’s ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less‐modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake.  相似文献   

14.
ABSTRACT: Control of stormwater runoff from impervious surfaces is an important national goal because of disruptions to downstream ecosystems, water users, and property owners caused by increased flows and degraded quality. One method for reducing stormwater is the use of vegetated (green) roofs, which efficiently detain and retain stormwater when compared to conventional (black) roofs. A paired green roof‐black roof test plot was constructed at the University of Georgia and monitored between November 2003 and November 2004 for the green roof's effectiveness in reducing stormwater flows. Stormwater mitigation performance was monitored for 31 precipitation events, which ranged in depth from 0.28 to 8.43 cm. Green roof precipitation retention decreased with precipitation depth; ranging from just under 90 percent for small storms (< 2.54 cm) to slightly less than 50 percent for larger storms (> 7.62 cm). Runoff from the green roof was delayed; average runoff lag times increased from 17.0 minutes for the black roof to 34.9 minutes for the green roof, an average increase of 17.9 minutes. Precipitation and runoff data were used to estimate the green roof curve number, CN = 86. This information can be used in hydrologic models for developing stormwater mitigation programs.  相似文献   

15.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   

16.
A goal in urban water management is to reduce the volume of stormwater runoff in urban systems and the effect of combined sewer overflows into receiving waters. Effective management of stormwater runoff in urban systems requires an accounting of various components of the urban water balance. To that end, precipitation, evapotranspiration (ET), sewer flow, and groundwater in a 3.40‐hectare sewershed in Detroit, Michigan were monitored to capture the response of the sewershed to stormwater flow prior to implementation of stormwater control measures. Monitoring results indicate that stormflow in sewers was not initiated unless rain depth was 3.6 mm or greater. ET removed more than 40% of the precipitation in the sewershed, whereas pipe flow accounted for 19%–85% of the losses. Flows within the sewer that could not be associated with direct precipitation indicate an unexpected exchange of water between the leaky sewer and the groundwater system, pathways through abandoned or failing residential infrastructure, or a combination of both. Groundwater data indicate that groundwater flows into the leaky combined sewer rather than out. This research demonstrates that urban hydrologic fluxes can modulate the local water cycle in complex ways which affect the efficiency of the wastewater system, effectiveness of stormwater management, and, ultimately, public health.  相似文献   

17.
Groundwater upwelling is important to coldwater fisheries survival. This study used stable isotopes to identify upwelling zones within a watershed, then combined isotope analyses with reach‐scale monitoring to measure surface water–groundwater exchange over time. Research focused on Amity Creek, Minnesota, a basin that exemplifies conditions limiting coldwater species survival along Lake Superior's North Shore where shallow bedrock limits groundwater capacity, lowering baseflows and increasing temperatures. Groundwater‐fed reaches were identified through synoptic isotope sampling, with results highlighting the importance of isolated shallow surficial aquifers (glacially derived sands and gravels) for providing cold baseflow waters. In an alluvial reach, monitoring well results show groundwater was stored in two reservoirs: one that reacts quickly to changes in stream levels, and one that remained isotopically isolated under most flow conditions, but which helps sustain summer baseflows for weeks to months. A 500‐year flood demonstrated the capacity of high‐flow events to alter surface water–groundwater connectivity. The previously isolated reservoir was exchanged or mixed during the flood pulse, while incision lowered the water table for years. The results here provide insight for streams that lack substantial groundwater inputs yet maintain coldwater species at risk in a warming climate and an approach for managers seeking to protect cold baseflow sources.  相似文献   

18.
This study investigated how the occurrence and magnitude of first flush events in stormwater may influence the effective management of urban runoff pollution. To facilitate the understanding of the first flush phenomenon on a seasonal scale, the City of San Jose, CA carried out an investigation between May 1997 and April 2000 to characterize concentrations of pollutants in local waterbodies during eight storm events. The purpose of the investigation was twofold: (1) To determine if concentrations of specific constituents in stormwater runoff are elevated during the first substantial storm of the wet season, and (2) To identify the physical and environmental conditions surrounding such events. Concentration data for total and dissolved metals, pesticides, polyaromatic hydrocarbons, anions, total suspended solids, total organic carbon, conductivity, gasoline and diesel, and volatile and semi-volatile organics were collected at over 25 sites. Monitoring data analysis focused on identifying physical and environmental conditions yielding increased levels of pollutants during the first substantial storms of the rainy season compared to other storm events. Quantitative analysis focused on metals and anions because most observations for other constituents were below detectable levels. The results suggest that first flush phenomena did not occur consistently throughout most of the stations investigated. The results further suggest that there are specific combinations of site and storm conditions that result in a first flush effect with respect to dissolved metals. Based on the results of this and related investigations, implications for urban runoff management are discussed. For example, if dissolved metals are of principal concern, it may be worthwhile to optimize existing control strategies to minimize pollutant loading from storms that are preceded by an extended dry period.  相似文献   

19.
Abstract: Runoff from urban catchments depends largely on the amount of impervious surface and the connectivity of these surfaces to the storm sewer drainage system. In residential areas, pervious lawns can be used to help manage stormwater runoff by intercepting and infiltrating runoff from impervious surfaces. The goal of this research was to develop and evaluate a simple method for estimating the reduction in stormwater runoff that results when runoff from an impervious surface (e.g., rooftop) is directed onto a pervious surface (e.g., lawn). Fifty‐two stormwater runoff reduction tests were conducted on six residential lawns in Madison, Wisconsin during the summer of 2004. An infiltration‐loss model that requires inputs of steady‐state infiltration rate, abstraction (defined here as surface storage, vegetation interception and cumulative total infiltration minus steady‐state infiltration during the period prior to steady‐state), and inundated area was evaluated using experimental data. The most accurate results were obtained using the observed steady‐state infiltration rates and inundated areas for each test, combined with a constant abstraction for all tests [root mean squared (RMS) difference = 1.0 cm]. A second case utilized lawn‐averaged steady‐state infiltration rates, a regression estimate of inundated area based on flow‐path length, and lawn‐specific abstractions based on infiltration rate (RMS difference = 2.2 cm). In practice, infiltration rates will likely be determined using double‐ring infiltration measurements (RMS difference = 3.1 cm) or soil texture (RMS difference = 5.7 cm). A generalized form of the model is presented and used to estimate annual stormwater runoff volume reductions for Madison. Results indicate the usefulness of urban lawns as a stormwater management practice and could be used to improve urban runoff models that incorporate indirectly connected impervious areas.  相似文献   

20.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号