共查询到20条相似文献,搜索用时 15 毫秒
1.
Nels R. Bjarke David S. Gutzler 《Journal of the American Water Resources Association》2023,59(5):1025-1040
A method is developed for choosing 21st Century streamflow projections among widely varying results from a large ensemble of climate model-driven simulations. We quantify observed trends in climate–streamflow relationships in the Rio Grande headwaters, which has experienced warming temperature and declining snowpack since the mid-20th Century. Prominent trends in the snowmelt runoff season are used to assess corresponding statistics in downscaled global climate model projections. We define “Observationally Consistent (OC)” simulations as those that reproduce historical changes to linear statistics of diminished snowpack–streamflow coupling in the headwaters and an associated increase in the contribution of spring season (post-peak snowpack) precipitation to streamflow. Only a modest fraction of the ensemble of simulations meets these consistency metrics. The subset of OC simulations projects significant decreases in headwaters flow, whereas the simulations that poorly replicate historical trends exhibit a much wider range of projected changes. These results bolster confidence in model-based projections of declining runoff in the Rio Grande headwaters in the snowmelt runoff season and offer an example of a methodology for evaluating model-based projections in basins with similar hydroclimates that have experienced pronounced climate changes in the recent historical record. 相似文献
2.
Shaleene B. Chavarria David S. Gutzler 《Journal of the American Water Resources Association》2018,54(3):644-659
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin. 相似文献
3.
W. Paul Miller Thomas C. Piechota 《Journal of the American Water Resources Association》2011,47(6):1197-1210
Miller, W. Paul and Thomas C. Piechota, 2011. Trends in Western U.S. Snowpack and Related Upper Colorado River Basin Streamflow. Journal of the American Water Resources Association (JAWRA) 47(6):1197–1210. DOI: 10.1111/j.1752‐1688.2011.00565.x Abstract: Water resource managers in the Western United States (U.S.) are currently faced with the challenge of adapting to unprecedented drought and uncertain impacts of climate change. Recent research has indicated increasing regional temperature and changes to precipitation and streamflow characteristics throughout the Western U.S. As such, there is increased uncertainty in hydroclimatological forecasts, which impact reservoir operations and water availability throughout the Western U.S., particularly in the Colorado River Basin. Previous research by the authors hypothesized a change in the character of precipitation (i.e., the frequency and amount of rainfall and snowfall events) throughout the Colorado River Basin. In the current study, 398 snowpack telemetry stations were investigated for trends in cumulative precipitation, snow water equivalent, and precipitation events. Observations of snow water equivalent characteristics were compared to observations in streamflow characteristics. Results indicate that the timing of the last day of the snow season corresponds well to the volume of runoff observed over the traditional peak flow season (April through July); conversely, the timing of the first day of the snow season does not correspond well to the volume of runoff observed over the peak flow season. This is significant to water resource managers and river forecasters, as snowpack characteristics may be indicative of a productive or unproductive runoff season. 相似文献
4.
Thomas A. Watson F. Anthony Barnett Stephen T. Gray Glenn A. Tootle 《Journal of the American Water Resources Association》2009,45(1):224-236
Abstract: Tree rings offer a means to extend observational records of streamflow by hundreds of years, but dendrohydrological techniques are not regularly applied to small tributary and headwaters gages. Here we explore the potential for extending three such gage records on small streams in the Wind River drainage of central Wyoming, United States. Using core samples taken from Douglas fir (Pseudotsuga menziesii), piñon pine (Pinus edulis), and limber pine (Pinus flexilis) at 38 sites, we were able to reconstruct streamflows for the headwaters of the Wind River back to 1672 AD or earlier. The streamflow reconstructions for Bull Lake Creek above Bull Lake; the Little Popo Agie River near Lander, Wyoming; and Wind River near Dubois, Wyoming explained between 40% and 64% of the observed variance, and these extended records performed well in a variety of statistical verification tests. The full reconstructions show pronounced inter‐annual variability in streamflow, and these proxy records also point to the prevalence of severe, sustained droughts in this region. These reconstructions indicate that the 20th Century was relatively wet compared to previous centuries, and actual gage records may capture only a limited subset of potential natural variability in this area. Further analyses reveal how tree‐ring based reconstructions for small tributary and headwaters gages can be strongly influenced by the length and quality of calibration records, but this work also demonstrates how the use of a spatially extensive network of tree‐ring sites can improve the quality of these types of reconstructions. 相似文献
5.
Brian J. Harshburger Von P. Walden Karen S. Humes Brandon C. Moore Troy R. Blandford Albert Rango 《Journal of the American Water Resources Association》2012,48(4):643-655
Harshburger, Brian J., Von P. Walden, Karen S. Humes, Brandon C. Moore, Troy R. Blandford, and Albert Rango, 2012. Generation of Ensemble Streamflow Forecasts Using an Enhanced Version of the Snowmelt Runoff Model. Journal of the American Water Resources Association (JAWRA) 48(4): 643‐655. DOI: 10.1111/j.1752‐1688.2012.00642.x Abstract: As water demand increases in the western United States, so does the need for accurate streamflow forecasts. We describe a method for generating ensemble streamflow forecasts (1‐15 days) using an enhanced version of the snowmelt runoff model (SRM). Forecasts are produced for three snowmelt‐dominated basins in Idaho. Model inputs are derived from meteorological forecasts, snow cover imagery, and surface observations from Snowpack Telemetry stations. The model performed well at lead times up to 7 days, but has significant predictability out to 15 days. The timing of peak flow and the streamflow volume are captured well by the model, but the peak‐flow value is typically low. The model performance was assessed by computing the coefficient of determination (R2), percentage of volume difference (Dv%), and a skill score that quantifies the usefulness of the forecasts relative to climatology. The average R2 value for the mean ensemble is >0.8 for all three basins for lead times up to seven days. The Dv% is fairly unbiased (within ±10%) out to seven days in two of the basins, but the model underpredicts Dv% in the third. The average skill scores for all basins are >0.6 for lead times up to seven days, indicating that the ensemble model outperforms climatology. These results validate the usefulness of the ensemble forecasting approach for basins of this type, suggesting that the ensemble version of SRM might be applied successfully to other basins in the Intermountain West. 相似文献
6.
Ryan T. Bailey Abedalrazq Khalil Vansa Chatikavanij 《Journal of the American Water Resources Association》2015,51(1):112-122
The water resources of the atolls of the Republic of Maldives are under continual threat from climatic and anthropogenic stresses, including land surface pollution, increasing population, drought, and sea‐level rise (SLR). These threats are particularly acute for groundwater resources due to the small land surface area and low elevation of each island. In this study, the groundwater resources, in terms of freshwater lens thickness, total volume of fresh groundwater, and safe yield are estimated for the 52 most populous islands of the Maldives for current conditions and for the year 2030, with the latter accounting for projected SLR and associated shoreline recession. An algebraic model, designed in previous studies to estimate the lens thickness of atoll islands, is expanded in this study to also estimate volume of groundwater. Results indicate that average current lens thickness, groundwater volume, and per capita safe yield are approximately 4.6 m, 1,300 million liters, and 300 l/day, and that these values will decrease by approximately 10, 11, and 34%, respectively, by the year 2030. Based on results, it is demonstrated that groundwater, in terms of quantity, is a viable source of water for the islands of the Maldives both now and in coming decades, particularly for islands with large surface area and low population. Study results can provide water resource managers and government officials with valuable data for consideration in water security measures. 相似文献
7.
Thomas C Pagano David C Garen Tom R Perkins Phillip A Pasteris 《Journal of the American Water Resources Association》2009,45(3):767-778
Abstract: Official seasonal water supply outlooks for the western United States are typically produced once per month from January through June. The Natural Resources Conservation Service has developed a new outlook product that allows the automated production and delivery of this type of forecast year‐round and with a daily update frequency. Daily snow water equivalent and water year‐to‐date precipitation data from multiple SNOTEL stations are combined using a statistical forecasting technique (“Z‐Score Regression”) to predict seasonal streamflow volume. The skill of these forecasts vs. lead‐time is comparable to the official published outlooks. The new product matches the intra‐monthly trends in the official forecasts until the target period is partly in the past, when the official forecasts begin to use information about observed streamflows to date. Geographically, the patterns of skill also match the official outlooks, with highest skill in Idaho and southern Colorado and lowest skill in the Colorado Front Range, eastern New Mexico, and eastern Montana. The direct and frequent delivery of objective guidance to users is a significant new development in the operational hydrologic seasonal forecasting community. 相似文献
8.
Adrian A. Harpold Kent Sutcliffe Jordan Clayton Angus Goodbody Shareily Vazquez 《Journal of the American Water Resources Association》2017,53(1):179-196
Changing climate and growing water demand are increasing the need for robust streamflow forecasts. Historically, operational streamflow forecasts made by the Natural Resources Conservation Service have relied on precipitation and snow water equivalent observations from Snow Telemetry (SNOTEL) sites. We investigate whether also including SNOTEL soil moisture observations improve April‐July streamflow volume forecast accuracy at 0, 1, 2, and 3‐month lead times at 12 watersheds in Utah and California. We found statistically significant improvement in 0 and 3‐month lead time accuracy in 8 of 12 watersheds and 10 of 12 watersheds for 1 and 2‐month lead times. Surprisingly, these improvements were insensitive to soil moisture metrics derived from soil physical properties. Forecasts were made with volumetric water content (VWC) averaged from October 1 to the forecast date. By including VWC at the 0‐month lead time the forecasts explained 7.3% more variability and increased the streamflow volume accuracy by 8.4% on average compared to standard forecasts that already explained an average 77% of the variability. At 1 to 3‐month lead times, the inclusion of soil moisture explained 12.3‐26.3% more variability than the standard forecast on average. Our findings indicate including soil moisture observations increased statistical streamflow forecast accuracy and thus, could potentially improve water supply reliability in regions affected by changing snowpacks. 相似文献
9.
Darren L. Ficklin Iris T. Stewart Edwin P. Maurer 《Journal of the American Water Resources Association》2012,48(6):1104-1125
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada. 相似文献
10.
Alex Pupacko 《Journal of the American Water Resources Association》1993,29(2):283-290
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends. 相似文献
11.
Blakemore E. Thomas 《Journal of the American Water Resources Association》2007,43(6):1550-1569
Abstract: Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15. 相似文献
12.
James B. Shanley Ann T. Chalmers Thomas J. Mack Thor E. Smith Philip T. Harte 《Journal of the American Water Resources Association》2016,52(5):1012-1030
We evaluated long‐term trends and predictors of groundwater levels by month from two well‐studied northern New England forested headwater glacial aquifers: Sleepers River, Vermont, 44 wells, 1992‐2013; and Hubbard Brook, New Hampshire, 15 wells, 1979‐2004. Based on Kendall Tau tests with Sen slope determination, a surprising number of well‐month combinations had negative trends (decreasing water levels) over the respective periods. Sleepers River had slightly more positive than negative trends overall, but among the significant trends (p < 0.1), negative trends dominated 67 to 40. At Hubbard Brook, negative trends outnumbered positive trends by a nearly 2:1 margin and all seven of the significant trends were negative. The negative trends occurred despite generally increasing trends in monthly and annual precipitation. This counterintuitive pattern may be a result of increased precipitation intensity causing higher runoff at the expense of recharge, such that evapotranspiration demand draws down groundwater storage. We evaluated predictors of month‐end water levels by multiple regression of 18 variables related to climate, streamflow, snowpack, and prior month water level. Monthly flow and prior month water level were the two strongest predictors for most months at both sites. The predictive power and ready availability of streamflow data can be exploited as a proxy to extend limited groundwater level records over longer time periods. 相似文献
13.
Gregory J. McCabe David M. Wolock 《Journal of the American Water Resources Association》1999,35(6):1473-1484
ABSTRACT: April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western U.S. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow. 相似文献
14.
Zhaohua Dai Carl C. Trettin Changsheng Li Devendra M. Amatya Ge Sun Harbin Li 《Journal of the American Water Resources Association》2010,46(5):1036-1048
Dai, Zhaohua, Carl C. Trettin, Changsheng Li, Devendra M. Amatya, Ge Sun, and Harbin Li, 2010. Sensitivity of Streamflow and Water Table Depth to Potential Climatic Variability in a Coastal Forested Watershed. Journal of the American Water Resources Association (JAWRA) 1–13. DOI: 10.1111/j.1752-1688.2010.00474.x Abstract: A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for predicting the streamflow and water table dynamics for this watershed with an acceptable model efficiency (E > 0.5 for daily streamflow and >0.75 for monthly streamflow). The simulation results from changing temperature and precipitation scenarios indicate that climate change influences both streamflow and water table in the forested watershed. Compared to current climate conditions, the annual average streamflow increased or decreased by 2.4% with one percentage increase or decrease in precipitation; a quadratic polynomial relationship between changes in water table depth (cm) and precipitation (%) was found. The annual average water table depth and annual average streamflow linearly decreased with an increase in temperature within the range of temperature change scenarios (0-6°C). The simulation results from the potential climate change scenarios indicate that future climate change will substantially impact the hydrological regime of upland and wetland forests on the coastal plain with corresponding implications to altered ecosystem functions that are dependent on water. 相似文献
15.
Roslyn A. Case Glen M. MacDonald 《Journal of the American Water Resources Association》2003,39(3):703-716
ABSTRACT: Information regarding long term hydrological variability is critical for the effective management of surface water resources. In the Canadian Prairie region, growing dependence on major river systems for irrigation and other consumptive uses has resulted in an increasing vulnerability to hydrological drought and growing interprovincial tension. This study presents the first dendrochronological records of streamflow for Canadian Prairie rivers. We present 1,113‐year, 522‐year, and 325‐year reconstructions of total water year (October to September) streamflow for the North Saskatchewan, South Saskatchewan, and Saskatchewan Rivers, respectively. The reconstructions indicate relatively high flows during the 20th Century and provide evidence of past prolonged droughts. Low flows during the 1840s correspond with aridity that extended over much of the western United States. Similarly, an exceptional period of prolonged low flow conditions, approximately 900 A.D. to 1300 A.D., is coincident with evidence of sustained drought across central and western North America. The 16th Century megadrought of the western United States and Mexico, however, does not appear to have had a major impact on the Canadian rivers. The dendrohydrological records illustrate the risks involved if future water policy and infrastructure development in the Canadian Prairies are based solely on records of streamflow variability over the historical record. 相似文献
16.
Gerald E. Galloway 《Journal of the American Water Resources Association》2011,47(3):563-570
Galloway, Gerald E., 2011. If Stationarity Is Dead, What Do We Do Now? Journal of the American Water Resources Association (JAWRA) 47(3):563‐570. DOI: 10.1111/j.1752‐1688.2011.00550.x Abstract: In January 2010, hydrologists, climatologists, engineers, and scientists met in Boulder, Colorado, to discuss the report of the death of hydrologic stationarity and the implications this might have on water resources planning and operations in the United States and abroad. For decades planners have relied on design guidance from the Interagency Advisory Committee on Water Data Bulletin 17B that was based upon the concept of stationarity. After 2½ days of discussion it became clear that the assembled community had yet to reach an agreement on whether or not to replace the assumption of stationarity with an assumption of nonstationarity or something else. Hydrologists were skeptical that data gathered to this point in the 21st Century point to any significant change in river parameters. Climatologists, on the other hand, point to climate change and the predicted shift away from current conditions to a more turbulent flood and drought filled future. Both groups are challenged to provide immediate guidance to those individuals in and outside the water community who today must commit funds and efforts on projects that will require the best estimates of future conditions. The workshop surfaced many approaches to dealing with these challenges. While there is good reason to support additional study of the death of stationarity, its implications, and new approaches, there is also a great need to provide those in the field the information they require now to plan, design, and operate today’s projects. 相似文献
17.
Gavin Gong Lucien Wang Laura Condon Alastair Shearman Upmanu Lall 《Journal of the American Water Resources Association》2010,46(3):574-585
Gong, Gavin, Lucien Wang, Laura Condon, Alastair Shearman, and Upmanu Lall, 2010. A Simple Framework for Incorporating Seasonal Streamflow Forecasts Into Existing Water Resource Management Practices. Journal of the American Water Resources Association (JAWRA) 46(3):574-585. DOI: 10.1111/j.1752-1688.2010.00435.x Abstract: Climate-based streamflow forecasting, coupled with an adaptive reservoir operation policy, can potentially improve decisions by water suppliers and watershed stakeholders. However, water suppliers are often wary of straying too far from their current management practices, and prefer forecasts that can be incorporated into existing system modeling tools. This paper presents a simple framework for utilizing streamflow forecasts that works within an existing management structure. Climate predictors are used to develop seasonal inflow forecasts. These are used to specify operating rules that connect to the probability of future (end of season) reservoir states, rather than to the current storage, as is done now. By considering both current storage and anticipated inflow, the likelihood of meeting management goals can be improved. The upper Delaware River Basin in the northeastern United States is used to demonstrate the basic idea. Physically plausible climate-based forecasts of March-April reservoir inflow are developed. Existing simulation tools and rule curves for the system are used to convert the inflow forecasts to reservoir level forecasts. Operating policies are revised during the forecast period to release less water during forecasts of low reservoir level. Hindcast simulations demonstrate reductions of 1.6% in the number of drought emergency days, which is a key performance measure. Forecasts with different levels of skill are examined to explore their utility. 相似文献
18.
Brian J. Harshburger Karen S. Humes Von P. Walden Brandon C. Moore Troy R. Blandford Albert Rango 《Journal of the American Water Resources Association》2010,46(3):603-617
Harshburger, Brian J., Karen S. Humes, Von P. Walden, Brandon C. Moore, Troy R. Blandford, and Albert Rango, 2010. Evaluation of Short-to-Medium Range Streamflow Forecasts Obtained Using an Enhanced Version of SRM. Journal of the American Water Resources Association (JAWRA) 46(3):603-617. DOI: 10.1111/j.1752-1688.2010.00437.x Abstract: As demand for water continues to escalate in the western United States, so does the need for accurate streamflow forecasts. Here, we describe a methodology for generating short-to-medium range (1 to 15 days) streamflow forecasts using an enhanced version of the Snowmelt Runoff Model (SRM), snow-covered area data derived from MODIS products, data from Snow Telemetry stations, and meteorological forecasts. The methodology was tested on three mid-elevation, snowmelt-dominated basins ranging in size from 1,600 to 3,500 km2. To optimize the model performance and aid in its operational implementation, two enhancements have been made to SRM: (1) the use of an antecedent temperature index method to track snowpack cold content, and (2) the use of both maximum and minimum critical temperatures to partition precipitation into rain, snow, or a mixture of rain and snow. The comparison of retrospective model simulations with observed streamflow shows that the enhancements significantly improve the model performance. Streamflow forecasts generated using the enhanced version of the model compare well with the observed streamflow for the earlier leadtimes; forecast performance diminishes with leadtime due to errors in the meteorological forecasts. The three basins modeled in this research are typical of many mid-elevation basins throughout the American West, thus there is potential for this methodology to be applied successfully to other mountainous basins. 相似文献
19.
Nolan T. Townsend David S. Gutzler 《Journal of the American Water Resources Association》2020,56(4):586-598
A statistical procedure is developed to adjust natural streamflows simulated by dynamical models in downstream reaches, to account for anthropogenic impairments to flow that are not considered in the model. The resulting normalized downstream flows are appropriate for use in assessments of future anthropogenically impaired flows in downstream reaches. The normalization is applied to assess the potential effects of climate change on future water availability on the Rio Grande at a gage just above the major storage reservoir on the river. Model‐simulated streamflow values were normalized using a statistical parameterization based on two constants that relate observed and simulated flows over a 50‐year historical baseline period (1964–2013). The first normalization constant is a ratio of the means, and the second constant is the ratio of interannual standard deviations between annual gaged and simulated flows. This procedure forces the gaged and simulated flows to have the same mean and variance over the baseline period. The normalization constants can be kept fixed for future flows, which effectively assumes that upstream water management does not change in the future, or projected management changes can be parameterized by adjusting the constants. At the gage considered in this study, the effect of the normalization is to reduce simulated historical flow values by an average of 72% over an ensemble of simulations, indicative of the large fraction of natural flow diverted from the river upstream from the gage. A weak tendency for declining flow emerges upon averaging over a large ensemble, with tremendous variability among the simulations. By the end of the 21st Century the higher‐emission scenarios show more pronounced declines in streamflow. 相似文献
20.
Robert W. Dudley Glenn A. Hodgkins 《Journal of the American Water Resources Association》2013,49(5):1198-1212
Water‐level trends spanning 20, 30, 40, and 50 years were tested using month‐end groundwater levels in 26, 12, 10, and 3 wells in northern New England (Maine, New Hampshire, and Vermont), respectively. Groundwater levels for 77 wells were used in interannual correlations with meteorological and hydrologic variables related to groundwater. Trends in the contemporary groundwater record (20 and 30 years) indicate increases (rises) or no substantial change in groundwater levels in all months for most wells throughout northern New England. The highest percentage of increasing 20‐year trends was in February through March, May through August, and October through November. Forty‐year trend results were mixed, whereas 50‐year trends indicated increasing groundwater levels. Whereas most monthly groundwater levels correlate strongly with the previous month's level, monthly levels also correlate strongly with monthly streamflows in the same month; correlations of levels with monthly precipitation are less frequent and weaker than those with streamflow. Groundwater levels in May through August correlate strongly with annual (water year) streamflow. Correlations of groundwater levels with streamflow data and the relative richness of 50‐ to 100‐year historical streamflow data suggest useful proxies for quantifying historical groundwater levels in light of the relatively short and fragmented groundwater data records presently available. 相似文献