首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crockett, Kris, Jonathan B. Martin, Henri D. Grissino-Mayer, Evan R. Larson, and Thomas Mirti, 2010. Assessment of Tree Rings as a Hydrologic Record in a Humid Subtropical Environment. Journal of the American Water Resources Association (JAWRA) 1-13. DOI: 10.1111/j.1752-1688.2010.00464.x Abstract: Information about long-term variability of streamflow is important to allocate water resources, but few historical records extend more than 75 years into the past, requiring proxy records to evaluate flow prior to that time. Flow proxies have been found in tree-ring widths in temperate regions, but have rarely been used in humid subtropical environments because the relationship between tree growth and climate was believed to be weakened by limited seasonality and stress on tree growth from drought conditions. Tree-ring residual chronologies from two forests sampled from northern Florida correlate well with historical annual discharge (r² values as high as 0.47) from 3 of 15 river-gauging stations that were used to compare with the tree-ring chronologies. The best correlations occur where streamflow has little contribution from spring discharge or continuous flow from lakes and wetlands. Streams lack correlations with the tree-ring residual chronologies (r² values as low as 0.0002) where springs and continuous discharge from lakes mute variations in their flow. Tree-ring chronologies appear to be useful for reconstruction of prehistorical variations of some streamflow in humid subtropical regions, but interpretations of the reconstructions must consider the local hydrologic conditions.  相似文献   

2.
Abstract: Tree basal growth in response to flooding regime was evaluated at a 5.2‐ha bottomland forest along the Olentangy River in central Ohio. Tree‐ring analysis was used to develop a 14‐year basal area increment (BAI) (cm2/year) series for 42 canopy trees (representing 10 species) throughout the bottomland. Mean annual BAI was evaluated relative to the frequency and duration of bankfull (>70 m3/s) and high‐flood (>154 m3/s) river discharge for a given water year (October 1‐September 30) and growing season (April 1‐September 30). A significant polynomial relationship was detected between the number of days of high‐flood river discharge over a combined two‐year period (Year i + Year i ? 1) and mean annual BAI. No significant relationships were detected when only the concurrent‐year or previous‐year flood regimes were considered or when growing season was considered. A similar relationship was detected when duration of high‐flood discharge days and BAI were both evaluated in two‐year increments (Year i + Year i ? 1). Mean annual BAI was most influenced by boxelder (Acer negundo) which was the dominant species and exhibited strong agreement with the overall BAI series. In each case, the resulting parabolic curve of tree basal growth in response to flooding suggests an optimal number of flooding days, a response to perturbation consistent with the subsidy‐stress model. Dendrochronology may be a useful tool for managers looking to restore environmental flows to regulated rivers.  相似文献   

3.
ABSTRACT: Ground-water pumpage withdrew 57 cubic feet per second from aquifers beneath the Yahara River Basin in 1970. Forty-six cubic feet per second were exported by the diversion of treated wastewater from the drainage basin. The low-flow hydrology of the upper Yahara River has been impacted by this diversion. Prior to 1959, the wastewater was discharged into the river, augmenting the baseflow during low-flow periods. As much as 85% of streamflow was due to effluent discharge. In 1959 the wastewater was transferred from the river basin. The result was a decrease of about one-third in mean annual streamflow, and a decrease of more than 50% in the 7Q2 and 7Q10. Regression analysis showed the annual 7-day low-flow and 60-day low-flow have a statistically significant correlation with mean annual flow. Using predictions of future mean annual discharge of the river with increasing interbasin transfers, it is shown that by 1990 there is a significant probability that in some years the 60-day low-flow in the river will be zero.  相似文献   

4.
The article presents nonparametric methods based on K nearest neighbors (KNNs), modified KNNs, and local polynomial techniques to reconstruct streamflow ensembles from tree‐ring data in Filyos River region (Turkey). Three methods were tested using cross‐validation for the overlap period, 1963‐1997 for which the tree‐ring and streamflow data are available. It was found that for the study where the length of the overlap period was limited, a nonparametric method based on a local polynomial technique provides simulations that have a slightly better solution than the other methods. After verification using standard statistical techniques, these methods were utilized to develop streamflow reconstructions from tree‐ring data for the paleo‐hydrologic period (1657‐1963). These reconstructions of seasonal low and high flows were discussed with the obtained flood duration curve. They were also compared with the historical archives and other tree‐ring reconstructions data available in the same river. Overall, the utility and limitations of these methods and the resulting streamflow simulations were discussed to assess the long‐term discharge behavior of Filyos River and to evaluate water supply reliability.  相似文献   

5.
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin.  相似文献   

6.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   

7.
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border.  相似文献   

8.
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration.  相似文献   

9.
ABSTRACT: In large floodplain rivers, hyporheic (subsurface) flow‐paths transfer nutrients from productive riparian terraces to oligotrophic off‐channel habitats. Because dissolved organic carbon (DOC) fuels microbial processes and hyporheic microorganisms represent the first stage of retention and transformation of these nutrients, understanding DOC flux can provide information on the constraints of microbial metabolism in the hyporheic zone of rivers. We monitored hydrology, physicochemical indicators, and dissolved organic carbon (DOC) dynamics during low and high discharge periods in the hyporheic zone of a riparian terrace on the Queets River, Washington, to understand what processes control the supply of carbon to subsurface microbial communities. As discharge increased, terrace hyporheic flowpaths changed from parallel to focused, and the location of surface water inputs to the terrace shifted from the terrace edge to head. Overall, DOC concentrations decreased along hyporheic flowpaths; however, concentrations at points along the flowpaths varied with position along the head gradient and age of the overlying vegetation. We estimated that there is insufficient DOC in adverting surface water to support hyporheic microbial metabolism in this riparian terrace. These trends indicate that there are additional carbon sources to the subsurface water, and we conclude that DOC is leaching from overlying riparian soils within the forest patches. Thus, subsurface DOC concentrations reflect a balance between surface water inputs, metabolic uptake, and allochthonous inputs from forest soils.  相似文献   

10.
ABSTRACT: Water resource planning is based primarily on 20th century instrumental records of climate and streamflow. These records are limited in length to approximately 100 years, in the best cases, and can reflect only a portion of the range of natural variability. The instrumental record neither can be used to gage the unusualness of 20th Century extreme low flow events, nor does it allow the detection of low‐frequency variability that may underlie short‐term variations in flow. In this study, tree rings are used to reconstruct mean annual streamflow for Middle Boulder Creek in the Colorado Front Range, a semi‐arid region of rapid growth and development. The reconstruction is based on a stepwise regression equation that accounts for 70 percent of the variance in the instrumental record, and extends from 1703–1987. The reconstruction suggests that the instrumental record of streamflow for Middle Boulder Creek is not representative of flow in past centuries and that several low flow events in the 19th century were more persistent than any in the 20th century. The 1840s to early 1850s period of low flow is a particularly notable event and may have coincided with a period of low flow in the Upper Colorado River Basin.  相似文献   

11.
Salinity, selenium, and uranium pose water‐quality challenges for the Arkansas River in southeastern Colorado and other rivers that support irrigation in semiarid regions. This study used 31 years of continuous discharge and specific conductance (SC) monitoring data to assess interannual patterns in water quality using mass balance on a 120‐km reach of river. Discrete sampling data were used to link the SC records to salinity, selenium, and uranium. Several important patterns emerged. Consumptive use reduced discharge by a median value of 33% and drove corresponding increases in salinity and uranium concentrations. Increased water availability for irrigation from rainfall and upstream snowpack in 1995–1999 flushed additional salinity and uranium into the river in 1996–2000; average annual total dissolved solids (salinity) concentrations increased 25%, and loads increased 131%. Smaller flushing events have occurred, sometimes lagging an increase in water availability by about one year. The pattern indicates flushing of salts temporarily stored, evaporatively concentrated, or of geologic origin. Mobilization of selenium from the reach was minor compared to salinity and uranium, and net selenium removal from the river was suggested in some years. Several processes related to irrigation could be removing selenium. The results provide context for efforts to improve water quality in the Arkansas River and rivers in other semiarid regions.  相似文献   

12.
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree‐ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree‐ring chronologies where high snowpack limits growth, which better represent the contribution of cool‐season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high‐intensity, long‐duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s‐1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm‐season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late‐19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands.  相似文献   

13.
14.
ABSTRACT: Flow regulation impacts the ecology of major rivers in various ways, including altering river channel migration patterns. Many current meander migration models employ a constant annual flow or dominant discharge value. To assess how flow regulation alters river function, variable annual flows ‐ based on an empirical relationship between bank erosion rates and cumulative effective stream power ‐ were added into an existing migration model. This enhanced model was used to evaluate the potential geomorphic and ecological consequences of four regulated flow scenarios (i.e., different hydrographs) currently being proposed on the Sacramento River in California. The observed rate of land reworked correlated significantly with observed cumulative effective stream power during seven time increments from 1956 to 1975 (r2= 0.74, p = 0.02). The river was observed to rework 3.0 ha/yr of land (a mean channel migration rate of 7.7 m/yr) with rates ranging from 0.8 ha/yr to 5.1 ha/yr (2.0 to 13.3 m/yr), during the analyzed time periods. Modeled rates of land reworked correlated significantly with observed rates of land reworked for the variable flow model (r2= 0.78, p = 0.009). The meander migration scenario modeling predicted a difference of 1 to 8 percent between the four flow management scenarios and the base scenario.  相似文献   

15.
ABSTRACT: The Caloosahatchee River has two major sources of freshwater one from its watershed and the other via an artificial connection to Lake Okeechobee. The contribution of each source to the freshwater discharge reaching the downstream estuary varies and either may dominate. Routine monitoring data were analyzed to determine the effects of total river discharge and source of discharge (river basin, lake) on water quality in the downstream estuary. Parameters examined were: color, total suspended solids, light attenuation, chlorophyll a, and total and dissolved inorganic nitrogen and phosphorus. In general, the concentrations of color, and total and dissolved inorganic nitrogen increased, and total suspended solids decreased, as total discharge increased. When the river basin was the major source, the concentrations of nutrients (excepting ammonia) and color in the estuary were relatively higher than when the lake was the major source. Light attenuation was greater when the river basin dominated freshwater discharge to the estuary. The analysis indicates that water quality in the downstream estuary changes as a function of both total discharge and source of discharge. Relative to discharge from the river basin, releases from Lake Okeechobee do not detectably increase concentrations of nutrients, color, or TSS in the estuary.  相似文献   

16.
Spatially comprehensive estimates of the physical characteristics of river segments over large areas are required in many large‐scale analyses of river systems and for the management of multiple basins. Remote sensing and modeling are often used to estimate river characteristics over large areas, but the uncertainties associated with these estimates and their dependence on the physical characteristics of the segments and their catchments are seldom quantified. Using test data with varying degrees of independence, we derived analytical models of the uncertainty associated with estimates of upstream catchment area (CA), segment slope, and mean annual discharge for all river segments of a digital representation of the hydrographic network of France. Although there were strong relationships between our test data and estimates at the scale of France, there were also large relative local uncertainties, which varied with the physical characteristics of the segments and their catchments. Discharge and CA were relatively uncertain where discharge was low and catchments were small. Discharge uncertainty also increased in catchments with large rainfall events and low minimum temperature. The uncertainty of segment slope was strongly related to segment length. Our uncertainty models were consistent across large regions of France, suggesting some degree of generality. Their analytical formulation should facilitate their use in large‐scale ecological studies and simulation models.  相似文献   

17.
ABSTRACT: The cascade correlation neural network was used to predict the two-year peak discharge (Q2) for major regional river basins of the continental United States (US). Watersheds ranged in size by four orders of magnitude. Results of the neural network predictions ranged from correlations of 0.73 for 104 test data in the Souris-Red Rainy river basin to 0.95 for 141 test data in California. These results are improvements over previous multilinear regressions involving more variables that showed correlations ranging from 0.26 to 0.94. Results are presented for neural networks trained and tested on drainage area, average annual precipitation, and mean basin elevation. A neural network trained on regional scale data in the Texas Gulf was comparable to previous estimates of Q2 by regression. Our research shows Q2 was difficult to predict for the Souris-Red Rainy, Missouri, and Rio Grande river basins compared to the rest of the US, and acceptable predictions could be made using only mean basin elevation and drainage areas of watersheds.  相似文献   

18.
Summary The present investigation was carried out in 1986, and is based upon about 20 years of river discharge data (1960s to 1980s). There are three important river-systems in Nepal - Sapt Kosi River system in East Nepal, Sapt Gandaki River system in mid- Nepal, and Karnali River system in West Nepal. The average annual highest rainfall is 3,685 mm yr–1, and the greatest mean annual suspended sediment load (1.434 g L–1) was recorded in Sapt Gandaki, while the water discharge from Sapt Kosi (1,747 m3 s–1) was the highest and so also was the silt discharge (0.4 million ton day–1). The correlation between water discharge and silt discharge was found to be statistically highly significant as verified by correlation and regression analyses.An abatement of human interference in the catchment areas of these rivers, and fodder/fuelwood plantation through the active participation of local people in their marginal land to decrease the human pressure on natural forests, are considered the two major easy, effective and economic methods to control the siltation hazard that is causing extensive deterioration to the environment in Nepal.Dr Govind P.S. Ghimire is Reader and Associate Professor in the Central Department of Botany at Tribhuvan University. Mr B.K. Uprety is an ecologist working on the Environmental Impact Study Project of His Majesty's Government, Nepal.  相似文献   

19.
Laser-ablation inductively coupled-plasma mass-spectrometry analysis of red oak (Quercus rubra) from a well documented heavy metal contaminated United States Environmental Protection Agency superfund site in Woburn, Massachusetts reveals decade-long trends in Pb contaminant sources. Lead isotope ratios (207Pb/206Pb and 208Pb/206Pb) in tree rings plot along a linear trend bracketed by several local and regional contamination sources. Statistically significant interannual variations in 207Pb/206Pb suggest that atmospheric Pb is rapidly incorporated into wood, with minimal mobility subsequent to deposition in annual growth rings. We interpret the decadal trends in our record as a changing mixture of local pollution sources and gasoline-derived Pb. Between 1940 and 1970, Pb was predominantly derived from remobilization of local industrial Pb sources. An abrupt shift in 207Pb/206Pb may indicate that local Pb sources were overwhelmed by gasoline-derived Pb during the peak of leaded gasoline emissions in the late 1960s and early 1970s.  相似文献   

20.
ABSTRACT: Nutrient loading from beef pastures located within the northern Lake Okeechobee watershed in Florida, has been identified as a source of phosphorus contributing to the accelerated eutrophication of the lake. Since 1989 within the watershed, 557 agricultural drainage sites, mainly beef pasture, have been monitored for compliance under a regulatory program. Of those sites, 154 were actively monitored for phosphorus concentrations from October 1, 1998, to September 30, 1999. Of these 154 sites, 77 were considered to be out of compliance (OOC). An OOC site is defined as having runoff with a 12‐month average phosphorus concentration exceeding the permitted discharge limit. The average annual phosphorous load from the 77 OOC sites for an eight‐year study period from October 1, 1991, to September 30, 1999, was estimated using measured concentration values and simulated runoff obtained from an agricultural nonpoint source pollution model, CREAMS‐WT. The 77 OOC sites produced an estimated average annual 46 metric tonnes of phosphorus load, of which an estimated 22 tonnes of phosphorus reached Lake Okeechobee on an average annual basis. The remaining estimated average annual 24 tonnes of phosphorus load was retained by streams and wetlands in the discharge transport system between the sites and the lake. The estimated average annual load reaching Lake Okeechobee from the OOC sites represented 11 percent of the phosphorus load above a five‐year average annual target load for the lake. However, the OOC site drainage areas represented only 3 percent of the northern watershed that drains into the lake. Of the 77 OOC sites, 12 sites had an average annual phosphorus loading rate equal to or greater than 3.0 kg/ha and were placed on the priority list for the Critical Restoration Project in the Lake Okeechobee watershed. To estimate the possible phosphorus load reductions from the 77 sites, two scenarios were modeled. The first scenario reduced phosphorus concentrations in runoff to the permitted discharge limits under the Lake Okeechobee regulatory program. The second scenario changed current land uses to native rangeland with an estimated annual offsite total phosphorus areal loading rate of 0.114 kg/ha. These two scenarios are hypothetical with assumed concentration values and loading rate. Model results showed that the first management scenario reduced the average annual phosphorus load to the lake by an estimated 15 tonnes. The second scenario reduced the average annual phosphorus load to the lake by an estimated 21 tonnes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号