首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: We have developed a computer model of soil loss on an upland watershed from the continuity considerations for sediment transport and from equations describing rill and interrill erosion. The model is based on dividing the upland area into a grid containing rill and interill zones, on the Universal Soil Loss Equation (USLE), and on equations describing detachment and transport capacity of rill flow. The USLE estimates the sediment load from the contributing areas. The location and amount of total erosion and deposition are determined by comparing the transport and detachment capacity of rill flow for specific storms. The model considers the mechanics of erosion process and can serve as basis for reservoir and channel design and land use planning.  相似文献   

2.
ABSTRACT: A soil erosion simulation model that considered the physical conditions of agricultural watersheds and that interfaced with the modified USDAHL-74 watershed hydrology model was developed. The erosion model simulates the detachment and transport of soil particles caused by raindrop impact and overland flow from rill and interrill areas. The model considers temporal and spatial variation of plant residue, crop canopy cover, snow cover, and the moisture content of surface soil as modifying factors of the erosive forces of raindrop impact and overland flow. The hydrology model simulates overland flow and some of the physical parameters that are used in the erosion model. The simulation is executed in the time interval determined by the rainfall rate or snowmelt rate. The erosion model compares the transport capacity of the overland flow and the sediment loaded in the overland flow to determine the fate account for the free soil particles that have already been detached and are readily available to be transported by the overland flow. The model was tested with data from two small agricultural watersheds in the Palouse region of the Pacific Northwest dryland. The model was calibrated by trial-and-error to determine the coefficients of the model.  相似文献   

3.
ABSTRACT: A rainfall simulator was used on runoff plots to study the effects of simulated canopy cover, trampling disturbance, and soil type on nil and interrill erosion. Sandy loam soil was more erodible than clay loam soil. Furthermore, the simulated canopy cover signffi-Soilfactorsrelatedtonil cantly influenced nil and interrill erosion. The effect of trampling on rill and interrill erosion varied with soil type (clay loam versus sandy loam) and erosion type (nh versus interrill erosion). On large plots, where both nil and internill erosion were involved, 30 percent trampling significantly increased soil loss. However, on small plots, 30 percent trampling significantly reduced interrill erosion.  相似文献   

4.
ABSTRACT: Soil infiltration capacity and interrill erosion are significantly influenced by soil frost on western rangelands which are characterized by cold winters and numerous freeze-thaw cycles. However, little is known about the variable influence of this phenomenon. Infiltration and interrill erosion were measured within a sagebrush-grass plant community during the winter, spring, and summer of 1989. Significant spatial and temporal differences in infiltration capacity and interrill erosion were found for shrub coppice dune and dune interspace soils. Infiltration was generally higher for coppice dune soils compared to interspace soils throughout the year. Infiltration capacity for both soils was lowest early in the year when the soil was frozen or saturated, then increased as the soil dried in the spring and summer. Interrill erosion was consistently lower for coppice dune soils compared to interspace soils. Erosion from interspace soils was greatest during a 19-day period in late winter characterized by diurnal freeze-thaw cycles, saturated surface soil conditions, and soil slaking.  相似文献   

5.
Abstract:  Tracer studies are needed to better understand watershed soil erosion and calibrate watershed erosion models. For the first time, stable nitrogen and carbon isotopes (δ15N and δ13C) and the carbon to nitrogen atomic ratio (C/N) natural tracers are used to investigate temporal and spatial variability of erosion processes within a sub‐watershed. Temporal variability was assessed by comparing δ15N, δ13C, and C/N of eroded‐soils from a non‐equilibrium erosion event immediately following freezing and thawing of surface soils with two erosion events characterized by equilibrium conditions with erosion downcutting. Spatial variability was assessed for the equilibrium events by using the δ15N and δ13C signatures of eroded‐soils to measure the fraction of eroded‐soil derived from rill/interrill erosion on upland hillslopes as compared to headcut erosion on floodplains. In order to perform this study, a number of tasks were carried out including: (1) sampling source‐soils from upland hillslopes and floodplains, (2) sampling eroded‐soils with an in situ trap in the stream of the sub‐watershed, (3) isotopic and elemental analysis of the samples using isotope ratio mass spectrometry, (4) fractioning eroded‐soil to its upland rill/interrill and floodplain headcut end‐members using an unmixing model within a Bayesian Markov Chain Monte Carlo framework, and (5) evaluating tracer unmixing model results by comparison with process‐based erosion prediction models for rill/interrill and headcut erosion processes. Results showed that finer soil particles eroded during the non‐equilibrium event were enriched in δ15N and δ13C tracers and depleted in C/N tracer relative to coarser soil particles eroded during the equilibrium events. Correlation of tracer signature with soil particle size was explainable based on known biogeochemical processes. δ15N and δ13C were also able to distinguish between upland rill/interrill erosion and floodplain headcut erosion, which was due to different plant cover at the erosion sources. Results from the tracer unmixing model highlighted future needs for coupling rill/interrill and headcut erosion prediction models.  相似文献   

6.
ABSTRACT: Few studies have addressed sediment discharge due to interrill erosion from natural and minimally disturbed alpine and subalpine forested watersheds. Infiltration, runoff, and surface erosion of two Tahoe Basin soils under several conditions were investigated using rainfall simulation. A significant three-way interaction among soil type, plot condition, and slope was identified. Although high erodibiity was commonly associated with disturbance and/or high slope, this was not always the case. Soil type, plot condition, slope, and duration of the event were all found to be important factors in determining the amount of erosion. Decreased water clarity in Lake Tahoe has been partly attributed to increased algal growth associated with surface runoff and erosion from adjacent watersheds. Interpretive evaluation for resource management planning should be event based and carefully delineated on a sitespecific basis.  相似文献   

7.
ABSTRACT: Natural rates of surface erosion on forested granitic soils in central Idaho were measured in 40 m2 bordered erosion plots over a period of four years. In addition, we measured a variety of site variables, soil properties, and summer rainstorm intensities in order to relate erosion rates to site attributes. Median winter erosion rates are approximately twice summer period rates, however mean summer rates are nearly twice winter rates because of infrequent high erosion caused by summer rainstorms. Regression equation models and regression tree models were constructed to explore relationships between erosion and factors that control erosion rates. Ground cover is the single factor that has the greatest influence on erosion rates during both summer and winter periods. Rainstorm intensity (erosivity index) strongly influences summer erosion rates, even on soils with high ground cover percentages. Few summer storms were of sufficient duration and intensity to cause rilling on the plots, and the data set was too small to elucidate differences in rill vs. interrill erosion. The regression tree models are relatively less biased than the regression equations developed, and explained 70 and 84 percent of the variability in summer and winter erosion rates, respectively.  相似文献   

8.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

9.
Polyacrylamide (PAM) is applied to 400000 irrigated hectares annually in the USA to control irrigation-induced erosion, yet the fate of dissolved PAM applied in irrigation water is not well documented. We determined the fate of PAM added to furrow streams under two treatments: Initial-10, 10 mg L(-1) PAM product applied only during the initial hours of the irrigation, and Cont-1, 1.0 mg L(-1) PAM product applied continuously during the entire irrigation. The study measured PAM concentrations in 167-m-long PAM-treated furrow streams and along a 530-m tail ditch that received this runoff. Soil was Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) with 1.5% slope. Samples were taken at three times during the irrigations, both during and after PAM application. Polyacrylamide was adsorbed to soil and removed from solution as the streams traversed the soil-lined channels. The removal rate increased with stream sediment concentration. Stream sediment concentrations were higher when PAM concentrations were <2 mg L(-1) a.i., for early irrigations, and when untreated tributary flows combined with the stream. In these cases, PAM concentration decreased to undetectable levels over the flow lengths used in this study. When inflows contained >6 mg L(-1) PAM a.i., stream sediment concentrations were minimal and PAM concentrations did not change down the furrow, though they decreased to undetectable levels within 0.5 h after application ceased. One percent of applied PAM was lost in tail-ditch runoff. This loss could have been eliminated by treating only the furrow advance or not treating the last two irrigations.  相似文献   

10.
Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063?Mg?year(-1) with an average soil loss of 11.2?Mg?year(-1). The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41?years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010?Mg?year(-1) and was estimated to be 1,640,947?Mg?year(-1) for the same two sub-basins. The measured sediment yield of the gauge station is 127.6?Mg?km(-2)?year(-1) but was estimated to be 170.2?Mg?km(-2) year(-1). The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.  相似文献   

11.
This study measured runoff and sediment concentration from the tire track and from the non-tire track to determine infiltration, interrill erodibility, and vegetative cover impacts of reopening an abandoned forest road. Runoff was lowest on the non-track portion of the abandoned road and highest on the reopened road. Sediment concentrations were significantly higher on the reopened road. Increased sediment concentrations were attributed to decreased vegetative cover, rather than traffic-induced changes in the physical soil properties of the reopened road. Thirty years of no traffic and vegetation regrowth was not sufficient to allow recovery of infiltration to values similar to an undisturbed forest. The study also found a significant dynamic behavior in interrill erodibility with respect to antecedent rainfall. Forest road erosion models that fail to account for this change will overestimate sediment yields.  相似文献   

12.
ABSTRACT: Most hydrologic models require input parameters which represent the variability found across an entire landscape. The estimation of such parameters is very difficult, particularly on rangeland. Improved model parameter estimation procedures are needed which incorporate the small-scale and temporal variability found on rangeland. This study investigates the use of a surface soil classification scheme to partition the spatial variability in hydrologic and interrill erosion processes in a sagebrush plant community. Four distinct microsites were found to exist within the sagebrush coppice-dune dune-interspace complex. The microsites explained the majority of variation in hydrologic and interrill erosion response found on the site and were discernable based on readily available soil and vegetation information. The variability within each microsite was quite low and was not well correlated with soil and vegetation properties. The surface soil classification scheme defined in this study can be quite useful for defining sampling procedures, for understanding hydrologic and erosion processes, and for parameterizing hydrologic models for use on sagebrush range-land.  相似文献   

13.
ABSTRACT: A simulation model that computes sediment yield due to sheet and rill erosion at the outlet of a large watershed requires daily precipitation and the soil, topographic, and vegetative characteristics of the watershed. An important problem, particularly in a large watershed, is the transport of sediment produced in the sub-watersheds to the outlet of the whole watershed. This problem is approached mathematically by a sediment routing model that is used as a component of the total model.  相似文献   

14.
ABSTRACT: Effects of long-term prescribed burning on infiltration and interrill erosion were assessed on two longleaf pine-bluestem sites in Louisiana. Treatments represented biennially-applied winter, spring, or summer burning on an upland sandy loam site for 20 years; and annual winter or spring, and biennial winter or spring burns on a bottomland silt loam site for 10 years, with unburned controls. Immediate effects of burning were a reduction in surface cover, exposing soil to raindrop impact. Burning the sandy loam site increased interrill erosion after winter and spring treatments, but produced no immediate changes in infiltration capacity or time to runoff irrespective of treatment season. Rapid recovery of under-story vegetation mitigated soil exposure. Biennial burning did not increase interrill erosion, or reduce infiltration capacity and time to runoff on the sandy loam site after 20 years. A complete herbaceous understory covered the silt loam site two years after treatment. Interrill erosion was not significantly increased, or infiltration capacity and time to runoff decreased on burning treatments than unburned controls on the silt loam site. Litter biomass was important in predicting interrill erosion. No surface cover condition could be linked to variability in infiltration capacity. This study provides evidence for the resiliency of a longleaf pine-bluestem association to prescribed burning.  相似文献   

15.
The prediction accuracy of agricultural nonpoint source pollution models such as Soil and Water Assessment Tool (SWAT) depends on how well model input spatial parameters describe the characteristics of the watershed. The objective of this study was to assess the effects of different soil data resolutions on stream flow, sediment and nutrient predictions when used as input for SWAT. SWAT model predictions were compared for the two US Department of Agriculture soil databases with different resolution, namely the State Soil Geographic database (STATSGO) and the Soil Survey Geographic database (SSURGO). Same number of sub-basins was used in the watershed delineation. However, the number of HRUs generated when STATSGO and SSURGO soil data were used is 261 and 1301, respectively. SSURGO, with the highest spatial resolution, has 51 unique soil types in the watershed distributed in 1301 HRUs, while STATSGO has only three distributed in 261 HRUS. As a result of low resolution STATSGO assigns a single classification to areas that may have different soil types if SSURGO were used. SSURGO included Hydrologic Response Units (HRUs) with soil types that were generalized to one soil group in STATSGO. The difference in the number and size of HRUs also has an effect on sediment yield parameters (slope and slope length). Thus, as a result of the discrepancies in soil type and size of HRUs stream flow predicted was higher when SSURGO was used compared to STATSGO. SSURGO predicted less stream loading than STATSGO in terms of sediment and sediment-attached nutrients components, and vice versa for dissolved nutrients. When compared to mean daily measured flow, STATSGO performed better relative to SSURGO before calibration. SSURGO provided better results after calibration as evaluated by R(2) value (0.74 compared to 0.61 for STATSGO) and the Nash-Sutcliffe coefficient of Efficiency (NSE) values (0.70 and 0.61 for SSURGO and STATSGO, respectively) although both are in the same satisfactory range. Modelers need to weigh the benefits before selecting the type of data resolution they are going to use depending on the watershed size and level of accuracy required because more effort is required to prepare and calibrate the model when a fine resolution soil data is used.  相似文献   

16.
Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.  相似文献   

17.
Abstract: Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land‐use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest region of southeastern Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un‐mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds, and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds were analyzed using Monte Carlo mass balance un‐mixing and it was found that: δ15N showed the ability to differentiate streambank erosion and surface soil erosion; and δ13C showed the ability to differentiate soil organic matter and geogenic organic matter. Results from the analyses suggest that streambank erosion downstream of surface coal mining sites is an especially significant source of sediment in coal mining disturbed watersheds. Further, the results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes. The dual‐isotope technique provides a useful method for further investigation of the impact of surface coal mining in the uplands of the watershed upon the geomorphologic state of the channel and the source of organic matter in aquatic systems impacted by surface coal mining.  相似文献   

18.
Geomorphic change from extreme events in large managed rivers has implications for river management. A steady‐state, quasi‐three‐dimensional hydrodynamic model was applied to a 29‐km reach of the Missouri River using 2011 flood data. Model results for an extreme flow (500‐year recurrence interval [RI]) and an elevated managed flow (75‐year RI) were used to assess sediment mobility through examination of the spatial distribution of boundary or bed shear stress (τb) and longitudinal patterns of average τb, velocity, and kurtosis of τb. Kurtosis of τb was used as an indicator of planform channel complexity and can be applied to other river systems. From differences in longitudinal patterns of sediment mobility for the two flows we can infer: (1) under extreme flow, the channel behaves as a single‐thread channel controlled primarily by flow, which enhances the meander pattern; (2) under elevated managed flows, the channel behaves as multithread channel controlled by the interaction of flow with bed and channel topography, resulting in a more complex channel; and (3) for both flows, the model reach lacks a consistent pattern of deposition or erosion, which indicates migration of areas of erosion and deposition within the reach. Despite caveats and limitations, the analysis provides useful information about geomorphic change under extreme flow and potential implications for river management. Although a 500‐year RI is rare, extreme hydrologic events such as this are predicted to increase in frequency.  相似文献   

19.
Effectiveness of grass barriers and vegetative filter strips (FS) for reducing transport of sediment and nutrients in runoff may depend on runoff flow conditions. We assessed the performance of (1) switchgrass (Panicum virgatum L.) barriers (0.7 m) planted above fescue (Festuca arundinacea Schreb.) filter strips under interrill (B-FS) and concentrated flow (CF-B-FS), and (2) fescue alone under interrill (FS) and concentrated flow (CF-FS) for reducing runoff, sediment, nitrogen (N), and phosphorus (P) loss from fallow plots on a Mexico silt loam. We compared exclusively the performance of barriers and filter strips separately under interrill and concentrated flow. Runoff and sediment were sampled at 1 m above and at 0.7, 4, and 8 m below the downslope edge of the sediment source area. Filter strips under interrill flow reduced 80% and those under concentrated flow reduced 72% of sediment at 0.7 m (P < 0.01). With the addition of supplemental runoff simulating runoff from a larger sediment source area, FS reduced 80%, but CF-FS reduced only 60% of sediment. The FS reduced organic N and NO(3)-N by an additional 50% (P < 0.01) more than CF-FS at 0.7 m. Although the effectiveness of both treatments increased with increasing width, CF-FS removed less sediment than FS alone at 8 m (P < 0.04). In contrast, barriers above filter strips under interrill and concentrated flow were equally effective at 8 m; decreasing runoff by 34%, sediment by 99%, and nutrients by 70%. Thus, barriers combined with FS can be an effective alternative to FS alone for sites where concentrated flows may occur.  相似文献   

20.
Soil erosion is a severe problem for many developing regions that lack adequate infrastructure to combat the problem. The authors established a first-order method for prioritizing areas to be examined and remediated using preexisting data and expert knowledge where data are lacking. The Universal Soil Loss Equation was applied to the Rio Lempa Basin in Central America using geographic information systems and remote sensing technologies, and the estimated erosion rates were compared with sediment delivery ratios. Spatial analysis indicates that agriculture on very steep slopes contributes only a small fraction to the total estimated soil erosion, whereas agriculture on gentle and moderately steep slopes contributes a large fraction of the erosion. Although much of the basin is in El Salvador, the greatest estimated amount of erosion is from Honduras. Data quality and availability were impaired by a lack of coordination among agencies and across countries. Several avenues for improving the authors’ methods are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号